

Cross section measurements of the ¹²C(n, α₀)⁹Be and ¹²C(n, n+3α) reactions in the ten-MeV region

Jie Liu¹, Zengqi Cui¹, Yiwei Hu¹, Haofan Bai¹, Cong Xia¹, Zhenpeng Chen², Tieshuan Fan¹, Jinxiang Chen¹, Guohui Zhang¹

> Peking University¹ Tsinghua University² INDEN-LE 20-23 June 2022

- 1. Introduction
- 2. Experiments
- 3. Data analysis
- 4. Results
- 5. Conclusions

1. Introduction

- Carbon: one of the most widespread elements in nature and organism.
- (n, lcp) reactions on carbon in MeV region are of interest for both nuclear technology applications and nuclear physics theories.

Carbon-based neutron spectrometers, e.g. diamond detectors.

Neutron dose calculations in human tissues

Nuclear reaction theories of light elements

- **1. Introduction**
 - Simultaneous measurements of energy spectrum and fluence of neutrons using a diamond detector;
 Jie Liu et. al., *Scientific Reports*, revision submitted.
 - Accurate neutron response matrix⁴⁻⁶;
 - Nuclear reaction data.

Fig 1. The simulated response matrix of the diamond detector for neutron energies ranging from 1.0 to 10.0 MeV (a) and 10.0 to 20.0 MeV (b).

• **Insufficient accuracy** of the present data for neutron induced reactions on ${}^{12}C$, e. g. ${}^{12}C(n, n+3\alpha)$ reaction.

Fig 2. The data of ${}^{12}C(n, n+3\alpha)$ reaction

2. Experiments ${}^{12}C(n, \alpha_0){}^{9}Be \otimes {}^{12}C(n, n+3\alpha)$ 北京大学 **Cross section measurements** Samples **Neutron fluence Neutrons** measurements **Detectors** China Institute of Atomic Energy Active target 1. ²H(*d*, *n*)³He reaction based on **1.** ²³⁸U (*n*, *f*) reaction; **Diamond detector** Beijing HI-13 tandem accelerator, $E_n = 9.50$, 10.00, 10.50, 11.50 MeV; **2.** Associated α particles 2. ³H(*d*, *n*)⁴He reaction based on

from the ³H(*d, n*)⁴He reaction.

 $3.8 \times 3.8 \times 0.50 \text{ cm}^3$

Cockcroft-Walton generator,

 $E_n = 14.27$ and 14.67 MeV.

2. Experiments

2.1 Experiments based on the HI-13 tandem accelerator

- Quasi monoenergetic neutrons: ²H(*d*, *n*)³He reaction;
- > Neutron fluences: fission events of the ${}^{238}U_{3}O_{8}$ sample (99.999%);
- > **Diamond detector**: active target; at 0-deg with respect to the beam
- Neutron energy spectra: EJ-309 liquid scintillator.

1. Cathode 2. Grid 3. Anode 4. Shielding plate

Fig.3 Experimental setup based on the HI-13 tandem accelerator.

2. Experiments

2.2 Experiments based on the Cockcroft-Walton generator

- Quasi monoenergetic neutrons: ³H(*d*, *n*)⁴He reaction;
- > Au-Si surface barrier detector: associated α particles from the ³H(*d*, *n*)⁴He; reaction for measuring the neutron fluences;
- > **Diamond detector**: active target.

- Positions of the diamond detector: $\theta = 45^{\circ}$ and $\theta = 80^{\circ}$.
- $E_d = 300 \text{ keV}$, mean neutron energies for the two θ : $E_n = 14.27$ and 14.67 MeV.

Calculation of the cross sections:

$$\sigma = \frac{N_{\text{events}}}{N_{12C}} \cdot \phi$$

> N_{evens} : Count of the ¹²C(n, α_0)⁹Be or ¹²C(n, $n+3\alpha$) events; > N_{12C} : Number of the ¹²C nucleis in the diamond detector; > ϕ : Neutron fluence at the diamond position.

3.1 Determination of the ${}^{12}C(n, \alpha_0)^9$ Be and ${}^{12}C(n, n+3\alpha)$ events (N_{evens})

3.2 Determinations of the neutron fluences (ϕ)

-- for experiments based on the HI-13 tandem accelerator

Fission events of the ²³⁸U₃O₈ sample

$$\phi = \frac{N_{\rm f} \cdot (1 - K_{\rm low})}{N_{238\rm U} \cdot \varepsilon_{\rm f} \cdot \sigma_{\rm f}} R$$

- N_f: count of the fission events between the lower and upper thresholds;
- \mathcal{E}_{f} : detection efficiency of the fission events;
- N_{238U} : number of the ²³⁸U nucleis;
- $\sigma_{\rm f}$: standard cross sections of the ²³⁸U(*n*, *f*) reaction⁷;
- *K*_{low}: proportion of the fission events induced by low-energy neutrons;
- *R*: ratio of the neutron fluence at the diamond detector position and that at the ²³⁸U₃O₈ sample position, determined by Monte Carlo simulation.

3.2 Determinations of the neutron fluences (ϕ)

---- for experiments based on the Cockcroft-Walton generator

Alpha particles from the ${}^{3}H(d, n){}^{4}He$ reaction

$$\phi = \frac{N_{\rm Au-Si}}{\Omega \cdot d^2} G$$

- *N*_{Au-Si}: count of the associated alpha particles;
- *d*: distance between the diamond detector and the T-Ti target;
- Ω: solid angle subtended by the Au-Si surface barrier detector and the T-Ti target;
- *G* : a factor to correct the different of the angle differential cross sections of the ³H(*d*, *n*)⁴He at the Au-Si surface barrier detector position and the diamond detector position.

Fig. 8. The energy spectrum of the associated alpha particles measured by the Au-Si surface barrier detector at $E_n = 14.27$ MeV.

とまた PEKING UNIVERSITY

4.1 Uncertainty analysis

Experiments based on HI-13 tandem accelerator

Source	Uncertanity (%)
$N_{\rm evens}$ for (<i>n</i> , α_0)	3.7 – 6.6
$N_{\rm evens}$ for (<i>n</i> , <i>n</i> +3 α)	5.4 - 14.1
N _{12C}	1.0
N _f	0.41 - 0.58
N _{238U}	1.0
€ f	0.9 - 1.3
$\sigma_{ m f}$	1.5
K _{low}	1.5 – 2.8
R	1.5 - 3.0

Experiments based on Cockcroft-Walton generator

Source	Uncertanity (%)
$N_{\rm evens}$ for (<i>n</i> , α_0)	2.9 - 4.4
$N_{\rm evens}$ for (<i>n</i> , <i>n</i> +3 α)	8.2 - 8.3
N _{12C}	1.0
N _{Au-Si}	0.9 – 1.3
${\it \Omega}$	5.0
G	0.14 - 0.20
d	0.5 - 1.1

- Uncertainties of ${}^{12}C(n, \alpha_0){}^{9}Be$ cross section: **5.4 7.5%**;
- Uncertainties of ${}^{12}C(n, n+3\alpha)$ cross section : **6.6 14.5%**.

4.2 ¹²C(n, α_0)⁹Be reaction

Fig. 9. The cross sections of the ${}^{12}C(n, \alpha_0){}^{9}Be$ reaction.

- ➤ In general, present results are in agreement with the evaluated data from JEFF-3.1⁸.
- ➢ In the range of 9.0 11.0 MeV, present results are in agreement with the evaluated data from ENDF/B-VIII.0⁹, JEFF-3.1⁸, CENDL-3.2¹⁰ and JENDL-5¹¹ libraries.
- ➤ In the range of 11.0 12.5 MeV, present results, the data by Kuvin¹² et al. and Schmidt¹³ et al. are all in agreement with the evaluated data from JEFF-3.1⁸.
- The cross sections around 14 MeV vary slowly with the neutron energy, in agreement with the evaluated data from JEFF-3.1⁸ and JENDL-5¹¹ libraries.

4.3 ¹²C(*n*, *n*+3*α*) Reaction

- Present results have higher accuracy than previous data.
- ➤ In the range of 10.0 12.0 MeV, present cross sections are in agreement with the evaluated data from JEFF-3.1⁸.
- Around 14 MeV, present cross sections agree with the evaluated data of JEFF-3.1⁸, CENDL-3.2¹⁰ and JENDL/AD-2017¹⁴ and the previous measurement results from Kondo-1¹⁵ et al., Antolkovic-1¹⁶ et al. and Baba¹⁷ et al.

Fig. 10. The cross sections of the ${}^{12}C(n, n+3\alpha)$ reaction.

4.4 R-matrix analysis - by Prof. ZhenPeng Chen using RAC

> For $n + {}^{12}C$, the reaction channels:

(n, tot)=

(n, el)+(n, inl)+(n, a)+(n, p)+(n, d)+(n, t)+(n, g)+

(n, 2n)+(n, n+3a)+

(n, x)

- The seven parts in the first row are two-body reaction channels: specific reaction channels in RAC;
- The two parts in the second row are multi-body reaction channels: **total width of reduced trace;**
- (n, x) represents the other reaction channels without experimental data.

The level scheme of ¹³C from Chen¹⁸ was used as primary values, some levels from Ajzenberg¹⁹ was added in RAC.

5. Conclusions

- Cross sections of the ¹²C(n, α₀)⁹Be and ¹²C(n, n+3α) reactions were measured with higher accuracy in the ten-MeV region using a diamond detector as an active target;
- The cross sections of the two reactions were measured simultaneously, which could be checked against each other;
- The present results are useful to clarify the deviations among the measurements and evaluations;
- R-matrix analysis for the n + ¹²C system were carried out using the RAC code, and reasonable results were obtained.

Future works

Paper preparation ...

Theoretical analysis of the two reactions ...

More neutron energy points ...

More reactions, i. e. ¹⁴N(n, α) and ¹⁶O(n, α) ...

References

¹M. Marinelli, et al., Appl. Phys. Lett. 90, 183509 (2007). https://doi.org/10.1063/1.2734921.

- ²W. Adam, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 434, 131 (1999). https://doi.org/10.1016/S0168-9002(99)00447-7.
- ³ M. Willander, et al., Mater. Sci: Mater. Electron. 17, 1 (2006). https://doi.org/10.1007/s10854-005-5137-4.
- ⁴L. Giacomelli, et al., Rev. Sci. Instrum. 87, 11D822 (2016). https://doi.org/10.1063/1.4960307.
- ⁵ M. Rebai, et al., Rev. Sci. Instrum. 87, 11D823 (2016). https://doi.org/10.1063/1.4960490.
- ⁶ M. Rebai, et al., J. Instrum. 8, P10007 (2013). https://doi.org/10.1088/1748-0221/8/10/P10007.
- ⁷A. D. Carlson, *et al.*, Nucl. Data Sheets 148, 143-188 (2018). https://doi.org/10.1016/j.nds.2018.02.002.
- ⁸ JEFF-3.1, https://www.oecd-nea.org/dbdata/nds_jefreports/jefreport-21/jeff21.pdf.
- ⁹ D. A. Brown, et al., Nucl. Data Sheets 148, 1-142 (2018). https://doi.org/10.1016/j.nds.2018.02.001.
- ¹⁰ CENDL-3.2, http://www.nuclear.csdb.cn/pingjia.html
- ¹¹ O. Iwamoto, et al., EPJ Web Conf. 239, 09002 (2020). https://doi.org/10.1051/epjconf/202023909002.
- ¹² S. A. Kuvin, et al., Phys. Rev. C 104, 014603 (2021). https://doi.org/10.1103/PhysRevC.104.014603.
- ¹³ D. Schmidt, et al., Rept: Phys. Techn. Bundesanst., Neutronenphysik Reports, No. 8 (1992).
- ¹⁴ K. Shibata, et al., JAEA-Conf 2016-004, pp.47-52.
- ¹⁵ K. Kondo, et al., J. Nucl. Sci. Technol. 45, 2 (2008). https://doi.org/10.1080/18811248.2008.9711420.
- ¹⁶ B. Antolkovic, et al., Nucl. Sci. Eng. 107, 1 (1991). https://doi.org/10.13182/NSE91-A23777.
- ¹⁷ M. Baba, et al., Conf. on Nucl. Data for Sci. and Technol. p.474 (1991).
- ¹⁸ Z. P. Chen, *et al.*, J. Phys. G: Nucl. Part. Phys. 31 (2005) 1249–1274.http://dx.doi.org/10.1088/0954-3899/31/11/010.
 ¹⁹ F. Ajzenberg-Selove, Nucl. Phys. A 523 1 (1991).