

ENN Fusion Technology Overview

Hebei Key Laboratory of Compact Fusion, Langfang, China

ENN Fusion Technology R&D Center (ENN-FTRC)

Minsheng Liu (刘敏胜), July 12, 2022

Established in 1989, ENN Group is a Chinese conglomerate committed to establishing modern energy systems and improving quality of life.

Employees:

40,000+

In-House Institutes

★ Energy Research Institute
 ★ Digital Research Institute
 ★ Institute of Life S&T

Publicly Traded Companies
 ★ ENN Energy Holdings 新奥能源(02688.HK)
 ★ ENN Ecological Holdings 新奥股份(600803.SH)
 ★ ENC Digital Technology 新智认知(603869.SH)
 ★ Tibet Tourism 西藏旅游(600749.SH)

ENN Energy Research Institute (EERI)

The ENN Energy Research Institute is ENN's innovation engine that is committed to addressing humanity's energy challenges.

> Team 500+ Researchers

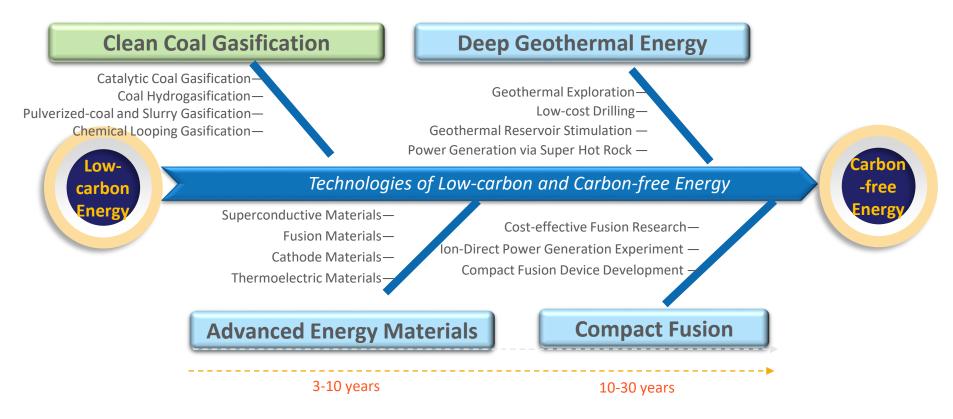
Partners

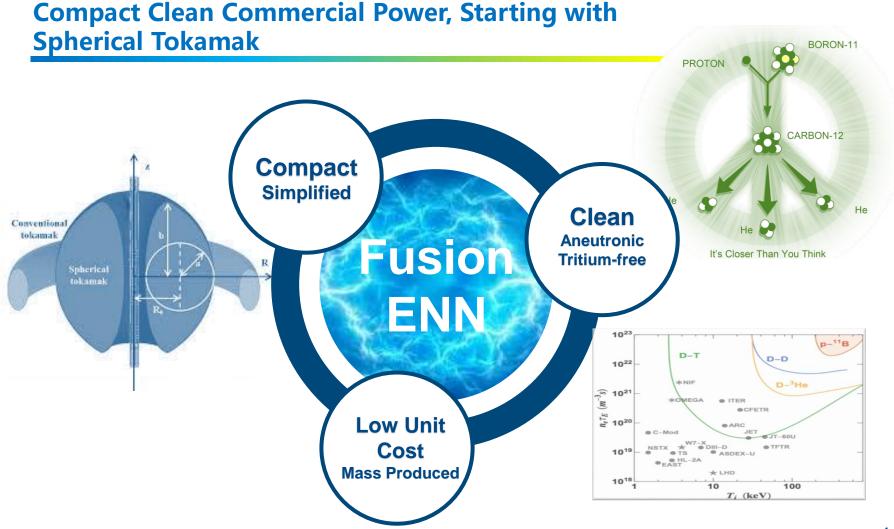
.

MIT UCLA University of Tokyo Tsinghua University Peking University

Intellectual Properties

Issued Patents 1600+ Utility Patents 800+

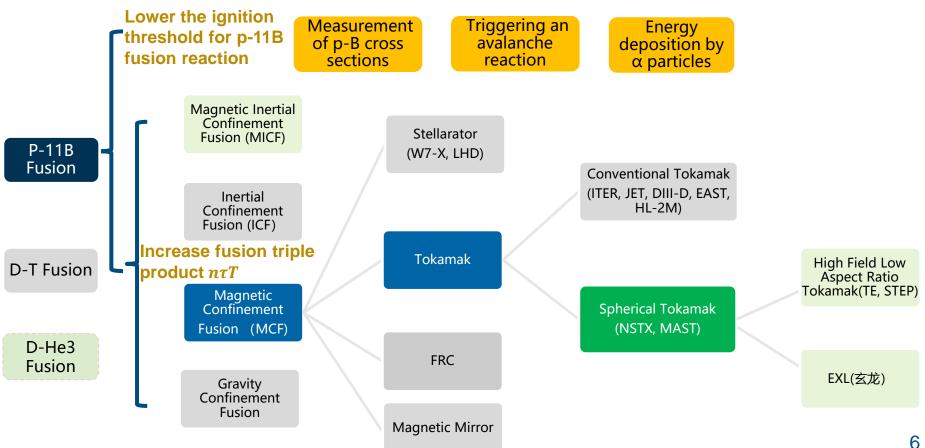

Innovation Platform


.....

State Key Laboratory for Coal-based Low Carbon Energy Hebei Key Laboratory of Compact Fusion International Scientific and Technological Collaboration Base Post-Doctoral and Academician Work Station

Research Areas

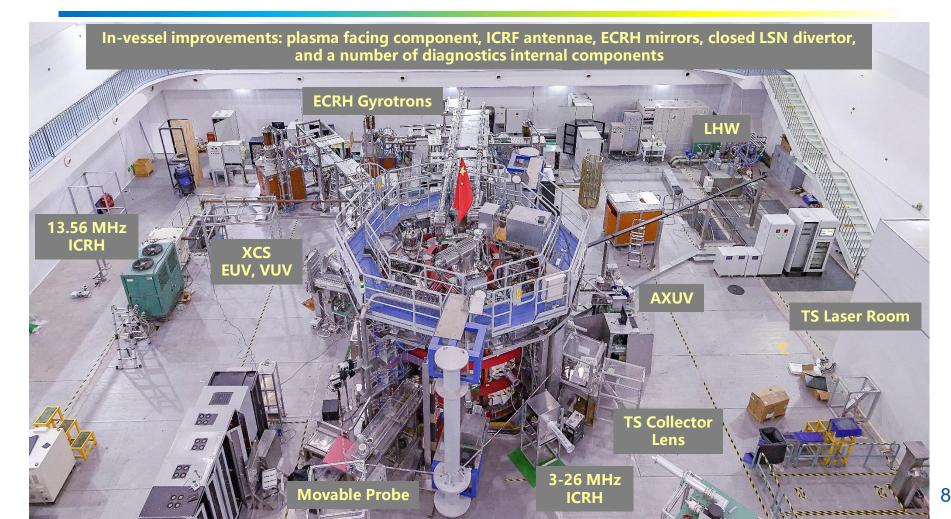
To Embrace a Carbon-free Future with Disruptive Innovations

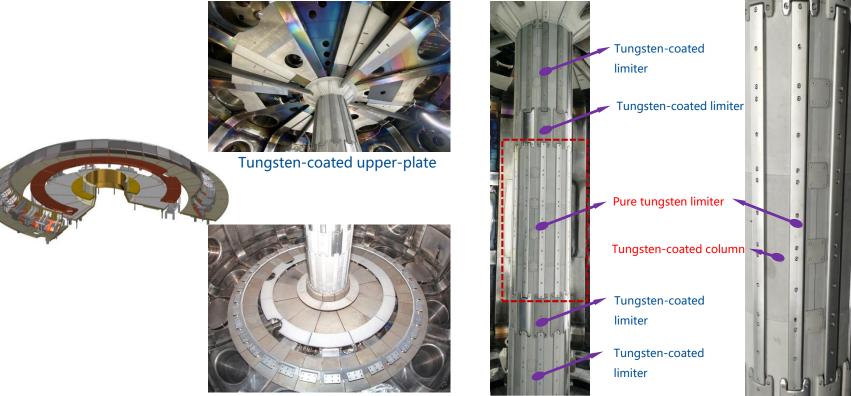


ENN Compact Fusion Timeline

Phase I:	ation Phy	ase II:	Phase III:	Phase IV:
Screening &evalu		ysics validation	Project demons ^a	tration Industrial Demonstrati
(2-4yrs)		10-12yrs)	(5-8yrs)	(5-8yrs)
 2018 Create technology roadmap Investigate confinement concepts Conduct experiments on small and medium-sized fusion devices Build a multidisciplinary team 		Theory validation on experimental platforms Develop key skills Collaborate with experts around the world to solve challenging technical problems	 Continue to tackle technic issues Develop pow generation solutions 	5

Explore P-11B Fusion based on Spherical Tokamak

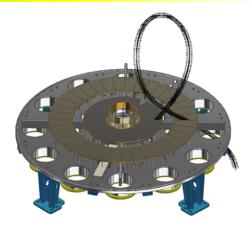

EXL-50 Proof-of – Principle Experimental Platform


Parameters	Technical Goals	
Plasma Current I _p	500 kA	
Toroidal Field B_T	0.46 T	
Major Radius R	0.58 m	
Minor Radius a	0.41 m	
Elongation k	1.8-2.2	
Triangularity δ	0.1-0.4	
Plasma Density	10 ¹⁹ m ⁻³	
Ion Temperature T _i	1 keV	
Pulse Length t _d	5 s	

ENN has designed and built the first medium-scale Spherical Tokamak experimental device EXL-50. On August 8, 2019, the first solenoid-free plasma discharge was produced on "EXL-50 ".

EXL-50 Experimental Platform following April Vessel Opening

Full Metal Tungsten-coated Wall


Tungsten-coated divertor

Pure tungsten limiter

Flexible Magnetic Configuration

Toroidal field coils

Poloidal field coils

Divertor target plate

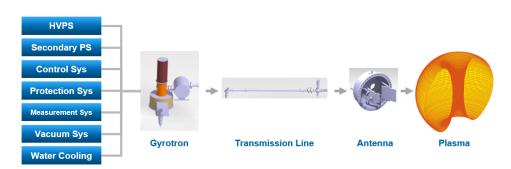
Parameter	Value
Turn	12
Current	100 kA
Magnetic field	0.41 T (at R=0.58m)
Materials	CuZr, CuAg
Weight	13 t
Cooling	water
Ripple	<1.6% (at R=1.51m)
Temperature rise	70 °С
Pulse flattop time	5 s

Coils	R, m	Z, m	dR, m	dZ, m	Turns	Current, kA
PF1 PF2	1.908	± 0.963	0.147	0.224	22	17.3
PF3 PF4	1.335	± 2.107	0.147	0.224	22	17.3
PF5 PF6	0.445	± 2.107	0.147	0.224	22	17.3

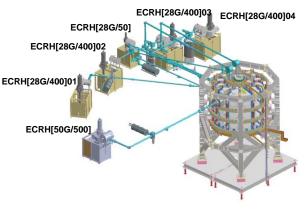
Lower Hybrid Current Drive (LHCD) System

- The 2.45GHz/15kW RF system produced the first plasma in 2019 and then was used for discharge cleaning, ECR boronization, and pre-ionization at full field.
- Now the 2.45GHz/200kW RF heating system is used as Lower Hybrid Current Drive System.




2.45GHz/15kW RF heating systems

2.45GHz/200kW LHCD systems


Electron Cyclotron Resonance Heating(ECRH) System

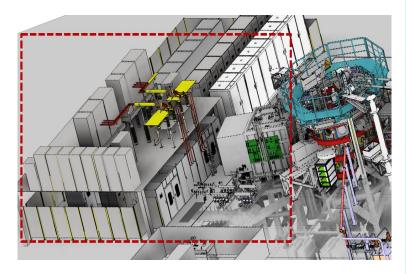
- The ECRH system is used for plasma start-up, heating and current drive.
- The EXL-50 device will be equipped with one 28GHz/50kW/30s system, four 28GHz/400kW/5s systems and one 50GHz/500kW/2s system by the end of 2022, when the total gyrotron output power is expected to reach 2.9 MW.
- The installed systems have delivered up to ~500kW/3s.
- One equatorial, three upper and two top launchers have been equipped for flexible position and injection angle control.
- A 50GHz ECRH system is being prepared to produce high density discharge, thus overcome the cut-off density of 28GHz(9.7×10¹⁸/m³) ECW.

Architecture of the ECRH System

2.9MW ECRH System Layout

Ion Cyclotron Range of Frequency (ICRF) System

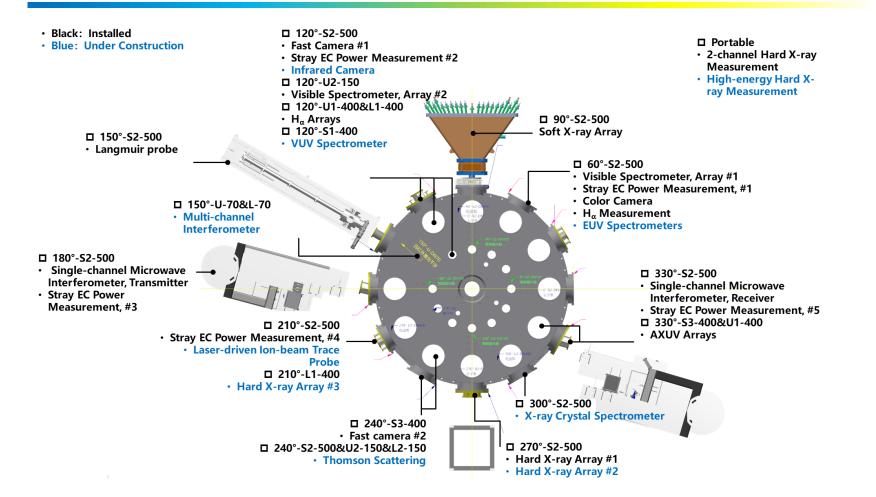
A 13.56MHz/40kW system with one 40kW solid-state generator and a 3-26MHz/100kW system with a 100kW broadcast transmitter has been installed in the EXL-50.



13.56MHz/40kW/5s ICRF system

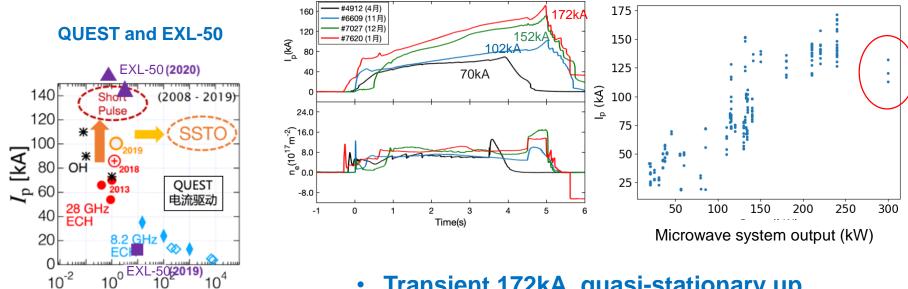
3~26MHz/100kW/5s ICRF system

1.5MW Neutral Beam Injection System



View of NBI on EXL-50

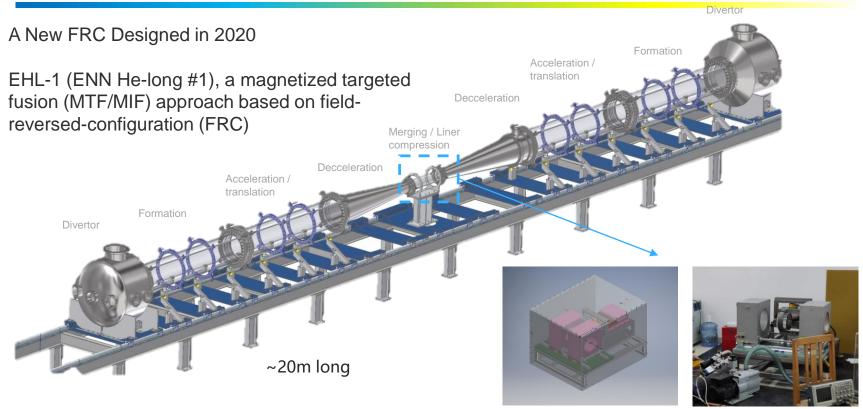
Main Parameters of 1.5MW NBI for EXL-50 Tokamak


- Ion source type: Multi-cusp bucket ion source
- Number of grids: 3
- Number of ion sources: 2
- Acceleration parameters: 50kV/40A/5s
- Beam Convergence angle: 2×3.2°
- Grid convergence angle: 178°
- Beam focal length: 5366mm
- Neutralization efficiency: > 55%
- Proton ratio: >70%
- Pumping speed: 1×10^6 l/s
- Residual ion deflection: magnetic deflection
- Injection angle: 55.3 °
- Number of filaments: 16

Present and Planned Diagnostics on EXL-50

Progress in Current Drive

 Δ [S] : (Pulse width)


 Transient 172kA, quasi-stationary up to 150kA

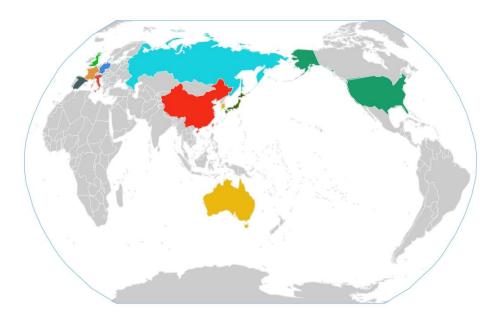
Divertor 2 Control system Divertor 1 Chamber Mirror 1 Mirror 3 Mirror 2 Mirro RMF antenna FC coil RF source Vacuum system 1 Vacuum system 2 创新 开启商用聚变 EFRC-0, July 2018

Field-Reversed-Configuration (FRC)

Uses Rotating Magnetic Fields (RMF)

Field-Reversed-Configuration (FRC)

A Liner Compression experiment without plasma was carried out in June, 2020.


ENN Fusion Technology R&D Center (2022)

Founding time	Our people	Honor
Feb. 2018	Around 100 researchers with 40% holding PhD degree	Authorized as Hebei Key Laboratory of Compact Fusion

Cooperation, Contribution, Moving Fusion Energy R&D Forward

- Promote an efficient and agile p-B fusion R&D effort, be a member of fusion community
- **Learning by doing, drawing from expertise in fusion, high-energy particles, laser, materials**
- **Engage experts from schools, laboratories, industries, power companies, private enterprises**

Conferences& Events

"Develop Fusion Energy, Benefit Mankind for Generations!"

Contact:

Dr. Minsheng Liu (liuminsheng@enn.cn)

Vice President of ENN Energy Research Institute, Director of ENN Fusion Technology R&D Center