Integral benchmark activities for radiation transport under the auspices of the NEA Nuclear Science Committee

Oliver BUSS, Michael FLEMING, Ian HILL, Tatiana IVANOVA, Julie-Fiona MARTIN
OECD/NEA Division of Nuclear Science and Education
wprs@oecd-nea.org
Outline

i. The NEA Nuclear Science Committee (NSC)

ii. NSC activities related to integral benchmark activities
 i. ICSBEP, SINBAD, IRPhE, SFCOMPO Databases and related Software Tools
 ii. WPRS Reactor Single- & Multi-Physics Benchmark Activities
 iii. ZPR Task Force
 iv. Nuclear Data Sensitivity Tool (NDaST)

iii. Updates @NEA DB

iv. Conclusions

Objectives

1. Provide overview on the NEA integral benchmark activities in the domain of radiation transport
2. Give overview on NEA infrastructure for maintaining the databases
3. Highlight related initiatives
4. Discuss future cooperation with the CoNDERC project
The NEA mission

To assist its member countries in maintaining and further developing, through international co-operation, the scientific, technological and legal bases required for a safe, environmentally sound and economical use of nuclear energy for peaceful purposes.

To provide authoritative assessments and to forge common understandings on key issues as input to government decisions on nuclear energy policy and to broader OECD policy analyses in areas such as energy and the sustainable development of low-carbon economies.
The NEA's current membership consists of 34 countries in Europe, North America and the Asia-Pacific region. Together they account for approximately 82% of the world's installed nuclear capacity.
NEA committees (as of 1 January 2022)

8 standing technical committees
1 management board
74 working parties and expert groups
Nuclear Science Committee

- Working Parties and Expert Groups:
 - provide member countries with up-to-date information, preserve knowledge, develop consensus
 - supervise data collections and associated software tools.
 - organize international benchmarks challenging state-of-the-art simulation methods on radiation transport.
 - organize conferences related to integral benchmarks (SATIF, WPRS Benchmarks Workshop).
 - are involved in related education activities.
Working Parties and Expert Groups...

- provide member countries with up-to-date information, preserve knowledge, develop consensus
- supervise data collections and associated software tools.
- organize international benchmarks challenging state-of-the-art simulation methods on radiation transport.
- organize conferences related to integral benchmarks (SATIF, WPRS Benchmarks Workshop).
- are involved in related education activities.
Motivation: Need for Databases & Feedback
Motivation: Need for Databases & Feedback

NEA Databases:

- ICSBEP: Number of evaluations
- IRPhE: Number of Evaluations
- SINBAD: Number of entries
- SFCOMPO: Number of assay samples

*In cooperation with RSICC

+ Other NEA Benchmark Initiatives

Quality
Motivation: Need for Databases & Feedback

Feedback mechanisms

- **Assessments of needs** with respect to basic data, methods, and V&V in NEA bodies

- **Quantitative feedback** with rapid feedback tools linking sensitivity profiles and integral experiments/applications
 - Large speed-up of feedback loop changed months into minutes
 - Immediate analysis of change
 - Quick checks in CI workflow
 - Indications to start dedicated analyses
 - E.g.: NDasT (NEA), ADVANCE (BNL), CRATER (LANL), ...
ICSBEP, SINBAD, IRPhE, SFCOMPO Databases and related Software Tools
The ICSBEP continues to provide high-quality integral benchmark data

- Valuable for nuclear data testing, uncertainty reduction, criticality safety, reactor physics, advanced modeling and simulation
- Data and expertise contributed from **26 countries**
- Enable current and future activities supported by experimental validation

2021 Edition
- Following TRGs end of 2020
- ~80,000 pages, 587 evaluations, incl. 5 new and 10 rev.
- To be published soon
- DICE, Database for ICSBEP maintained and annually released

2022 Edition
- Annual meeting in Oct. + Dec ’21
- ~80 participants
- 10 new evaluations (7 approved) + 1 rev.

Next ICSBEP TRG: November 2022 and April 2023
Recent additions to the Handbook relevant to radiation characterization

Approved late 2021, under edition, to be published early 2023

ALARM-CF-CU-SHIELD-001

Measurement of Fast Neutrons Leakage Spectra from Copper Block with Cf-252 Source in Center
- Performed @ Research Center Rez
- Measured proton recoil spectra to obtain neutron leakage flux/spectra
- Useful to test the validity of neutron cross section data

FUND-ORELA-ACC-GRAPH-PNSDT-001

Benchmark of Neutron Thermalization in Graphite using the Slowing-Down-Time ORELA Experiment
- Oak Ridge Electron Linear Accelerator Facility
- Nuclear graphite pile
- Useful to test thermal scattering law data
Continuous update of IRPhE and IRPhE Database and Analysis Tool (IDAT)

- TRG Meeting was held in December 2021:
 - IPEN evaluation on kinetics parameters and reactivity effects
 - Revision to ZPPR evaluations to clarify drawer orientation
 - Updates on TVA-WB1 and MPCMIV benchmark evaluations
- Next meeting is scheduled to be held in April 2023 in conjunction with the ICSBEP TRG.
- NEA continues to maintain the relational database tool to search the Handbook: www.oecd-nea.org/idat

Next Handbook Edition:
- 23 Participating Countries
- 56 Reactor Facilities
- Data from 169 Experimental Series
 - 165 Approved Benchmarks
 - 4 DRAFT Benchmarks
- Available End of 2022

New Chair: Mark DeHart (USA)
New Vice Chair: TBD
NEA-Secretariat: Ian Hill

https://oe.cd/IRPHE
SFCOMPO TRG - Technical Review Group for the International Assay Data of Spent Nuclear Fuel Database

- **SFCOMPO 2.0** is the largest international database of open experimental radiochemical assay data for spent nuclear fuel - over 700 spent nuclear fuel samples from fuel irradiated in 44 reactors.
- **Focus of the TRG:**
 - Collection of experimental data incl. decay heat data
 - Work in progress on adding publicly available decay heat data
 - Progress on data release by the MALIBU program participants with support of SFCOMPO TRG, in view of adding to the SFCOMPO2.0
 - Evaluation of the experimental data and the development of benchmarks and benchmark models
 - 2 in progress: Fukushima Daini 2, BWR samples SF98 and SF99; Gösgen PWR GU4
 - 2 approved: TMI1 assemblies NJ05YU and NJ070G (15x15); Fukushima-Daini1 2F1ZN2 and 2F1ZN3 (9x9)
 - Maintenance of the database and GUI

Figure: Number of spent nuclear fuel samples per reactor type in SFCOMPO (2017 edition)

Chair: G. Ilas (USA)
NEA Secretariat: J.-F. Martin

oe.cd/nea-sfcompo
Shielding Benchmarks: ICSBEP and SINBAD

ICSBEP Process:

- ICSBEP includes only experimental benchmarks with thoroughly evaluated uncertainties by ICSBEP TRG
- Other data stored in SINBAD

New Iterative Process for SINBAD:

- **Data acquisition**
- **Release**
- **Maintenance**

→ Towards SINBAD as independent, reviewed database with datasets at different maturity levels with continuous releases

Evaluated Shielding Experiment Entry in ICSBEP Volume VIII
ICSBEP Volume 8: Criticality Alarm / Shielding Measurements

- Quality control: all experimental data are thoroughly evaluated and internationally peer-reviewed
- Started in 2005 by the NEA ICSBEP TRG, Blair Briggs and others
- Distributed by OECD/NEA
- Experimental Benchmarks:
 - Neutron and photon leakage spectra from CF-252 source at centre of
 - 40-cm diameter iron sphere
 - six iron spheres of different diameters
 - six lead spheres of different diameters
 - Neutron activation foil and thermoluminescent dosimeter responses to a
 - bare,
 - polyethylene, and
 - lead
 reflected pulse of the CEA Valduc Silene critical assembly
 - Neutron fields in three-section concrete labyrinth from CF-252 source
 - Baikal-1 skyshine experiment
SINBAD - Shielding Integral Benchmark Archive and Database

- **Work jointly carried out by the United States’ Radiation Safety Information Computational Center (RSICC) and the NEA.**
- 102 reactor, fusion neutronics, and accelerator shielding experiments
- Started in 1992 by OECD/NEA Databank and ORNL/RSICC by E. Sartori, B. Kirk, I. Kodeli, and others
- Quality reviews performed for approx. 50% of entries*
- Distributed by OECD/NEA and ORNL/RSICC

* See “SINBAD – Radiation shielding benchmark experiments”, Kodeli and Sartori, [Annals of Nuclear Energy, Volume 159, 108254](https://www.oecd-nea.org/)

Fission, 48

Fusion, 31

Accelerator, 23

Spallation, 7

Production of secondary particles, 1

Residual or shutdown dose...

Tritium breeding related, 2

Attenuation of neutron flux, gamma flux and their doses, 86

[oe.cd/nea-sinbad](https://www.oecd-nea.org/)

© 2022 OECD/NEA

www.oecd-nea.org
SINBAD - Motivation for Change

- 102 reactor, fusion neutronics, and accelerator shielding experiments
 - **BUT:** only 9 updates since 2016 and only 4 new experiments added in the last 10 years

→ **Motivation to initiate NEW EGPRS Task Force on SINBAD**
 - Reinvigorate SINBAD
 - Modernize the database building upon previous work
 - Implement new software tools for database maintenance based on new NEA Data Bank infrastructure
 - (Re-)Build community of database developers
 - Adopt standardized format agreed in 2019 for SINBAD

→ Improve the quality of the existing database entries
→ Provide new database entries
New SINBAD Task Force

- **Modular organization:** task force splits in several subgroups working on different entries/experiments
- **Progressive, well-defined process:** SINBAD entries can undergo subsequent updates to reach well-defined intermediate maturity levels with well-defined prerequisites
- **Goal to update publicly available information automatically, as soon as a benchmark improvement has been approved**
- **Process different to previous TRG guidance of 2019 for the update process and the process for ICSBEP**, which allows data of different quality to be included in SINBAD
- **Participation:** 10 NEA member countries + IAEA + CERN, 30 Institutions
Prerequisites

<table>
<thead>
<tr>
<th>Re-distribution rights for experimental data and documentation has been obtained</th>
<th>Maturity Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒</td>
<td>1</td>
</tr>
</tbody>
</table>

Experiment documentation according to Section 1 of Evaluation Guide (SINBAD TRG, 2019[3])

- Description of the measurement facility
 - 1
- Description of each measurement configuration
 - 1
- Description of materials
 - 1
- Description of radiation sources
 - 1
- Measurement of input and output variables
 - 1
- Data in basic machine-readable format (e.g. CSV)
 - 1

Evaluation of measurement data (Section 2 of Evaluation Guide (SINBAD TRG, 2019[3]))

- Evaluation of measurement configuration
 - 1
- Evaluation of radiation source
 - 1
- Evaluation of the measured data
 - 1
- Provision of computation models which have been used for evaluations
 - 1
- Sensitivity and uncertainty analysis (including provision of computation models)
 - 1
- Data in hierarchical machine readable data format (e.g. HDF5)
 - 1

Geometry as CAD model

- 1

Benchmark model (Section 3 of Evaluation Guide (SINBAD TRG, 2019[3]))

- 1

Sample case results and input files for related computational models (Section 4 of Evaluation Guide (SINBAD TRG, 2019[3]))

- 1

Provision of automatic pre- & post-processing chain for the benchmark models

- 1
New SINBAD development platform

- *New* SINBAD development platform:
 NEA GitLab hosted by OECD NEA Data Bank (on-premise)
 - GitLab access for task force and subgroup members
 - Subgroups work in branches & issue merge requests to maintainers (NEA & Task Force Chair)

- **Issue Tracking:**
 - Transparent issue tracking for development within GitLab
 - Users are asked to report issues to wprs@oecdnea.org

- SINBAD releases will be distributed by OECD NEA DB and ORNL/RSICC
Status of SINBAD Task Force

28/01/22: Kick-Off

25/03/22: Update procedures, workflows, and GitLab hand-over

7 active subgroups
+ 1 ICSBEP candidate
+ 5 planned subgroups

04/03/2022: Prioritize development & define subgroups dealing with specific entries

Development Phase:
Independent subgroups for different entries and periodic Task Force reviews

02/2023: Status Report during WPRS week

03/2024: Final Evaluation of Task Force Efficiency by EGPRS ➔ TRG or Stop

© 2022 Organisation for Economic Co-operation and Development
Active Subgroups

<table>
<thead>
<tr>
<th>Subgroup Title</th>
<th>Coordinator</th>
<th>Application domain</th>
<th>Target Level</th>
<th>Due Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIMAC</td>
<td>S. Tsuda (JPN)</td>
<td>accelerators: secondary neutrons produced from thick targets bombarded by 100-800 MeV/nucleon ions beams</td>
<td>4 = ICSBEP</td>
<td>Feb-23</td>
<td>ICSBEP Candidate</td>
</tr>
<tr>
<td>Vessel fluence</td>
<td>A. Alpan (USA)</td>
<td>V&V for RPV ageing studies</td>
<td>1-2</td>
<td></td>
<td>In draft phase</td>
</tr>
<tr>
<td>LLNL pulsed spheres</td>
<td>S. Kim (USA)</td>
<td>Fusion: Attenuation of 14MeV neutrons on different materials</td>
<td>4-5</td>
<td>Feb-23</td>
<td>In external review</td>
</tr>
<tr>
<td>FNG Copper</td>
<td>I. Kodeli (UK)</td>
<td>Fusion: Attenuation of 14MeV neutrons in Cu</td>
<td>4</td>
<td>2023</td>
<td>In review process</td>
</tr>
<tr>
<td>KFK - n gamma</td>
<td>S. Simakov (GER), O. Buss (NEA)</td>
<td>Neutron and gamma attenuation in Fe and the (n,gamma) reaction</td>
<td>3-4</td>
<td>2023</td>
<td>In review process of Section 1</td>
</tr>
<tr>
<td>FNG HCLL</td>
<td>P. Ortego (SPN)</td>
<td>Fusion: Tritium breeding in a mockup of the European Test Blanket Module (TBM) based on lead-lithium and cooled by helium, the Helium Cooled Lead Lithium (HCLL) to be tested in ITER</td>
<td>4-5</td>
<td>2023</td>
<td>In review process</td>
</tr>
<tr>
<td>Broomstick: O16</td>
<td>S. Simakov (GER), O. Buss (NEA)</td>
<td>Attenuation of neutrons in O16</td>
<td>3-4</td>
<td>2023</td>
<td>In review process of Section 1</td>
</tr>
<tr>
<td>CERF</td>
<td>R. Froeschl (CERN)</td>
<td>accelerators: Activation and residual dose rates + neutron shielding, irradiation at CERN with hadron beam</td>
<td>In draft phase</td>
<td></td>
<td>In draft phase</td>
</tr>
</tbody>
</table>

- **Oktavian**: 14 MeV neutron attenuation in Al, Fe, Ni, Si, W
- **Water-cooled lithium lead (WCLL) breeding blankets**
 - **SFR specific benchmarks**: JASPER-IHX, JANUS-1, JANUS-8, SB3-GAM, RA-SKYSHINE, SDT-12, EURACOS-NA (high interest by Terrapower)
 - Dog-legged void neutron assembly (DLVN): 3D neutron streaming
Generating Feedback

Limited Selection of Activities
Working Party on Scientific Issues and Uncertainty Analysis of Reactor Systems (WPRS)

Chairs: K. Ivanov (NCSU, USA), H. Ferroukhi (PSI, CH)

Key Facts WPRS:
- 16 Delegations + IAEA/EU
- >120 participants in 02/2022 meetings
- 17 ongoing benchmark phases, 3 planned benchmarks
- 172 benchmark participants to 2022 WPRS Workshops in Aix-en-Provence (30/05 - 03/06 2022)

Next meetings:
- 20/02/23 – 24/02/23: WPRS Meeting, Paris
- 22/05/23 – 26/05/23: WPRS Workshops, Bologna, Italy

http://oe.cd/wprs
Working Party on Scientific Issues and Uncertainty Analysis of Reactor Systems (WPRS)

Key Facts WPRS:
- 16 Delegations + IAEA/EU
- >120 participants in 02/2022 meetings
- 17 ongoing benchmark phases, 3 planned benchmarks
- 172 benchmark participants to 2022 WPRS Workshops in Aix-en-Provence (30/05 - 03/06 2022)

Next meetings:
- 20/02/23 – 24/02/23: WPRS Meeting, Paris
- 22/05/23 – 26/05/23: WPRS Workshops, Bologna, Italy

Chairs: K. Ivanov (NCSU, USA), H. Ferroukhi (PSI, CH)
Reactor Single- and Multi-Physics Benchmarks: Current Activities

<table>
<thead>
<tr>
<th>Ongoing Reactor Single- and Multi-Physics Benchmark Activities</th>
<th>System</th>
<th>Neutronics</th>
<th>T/H</th>
<th>Multi-Physics</th>
<th>Fuel Perf.</th>
<th>NDA?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benchmark for Uncertainty Analysis in Best-Estimate Modelling for Design, Operation and Safety Analysis of • Light Water Reactors (LWR-UAM) • Sodium-cooled Fast Reactors (SFR-UAM)</td>
<td>LWR SFR</td>
<td>Focus on Uncertainty Quantification, wide range of LWR and SFR applications</td>
<td></td>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Fluoride-salt-cooled High temperature Reactor (FHR)</td>
<td>MSR</td>
<td>Heterogeneities, TRISO</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Deterministic Time-Dependent Neutron Transport Benchmark without Spatial Homogenization (CSG7-TD)</td>
<td>LWR</td>
<td>High fidelity to low fidelity information</td>
<td></td>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>TVA Watts Bar Unit 1 Multi-Physics Benchmark</td>
<td>PWR</td>
<td>Comparison to real reactor cycles & transients</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Rostov-2 VVER-1000 Benchmark</td>
<td>VVER</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Liquid Metal Fast Reactor Core Thermal-Hydraulics Benchmark (LMFR T/H)</td>
<td>LMFR</td>
<td>High fidelity simulations vs. experiment</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>McMaster Core Thermal-Hydraulics Benchmark</td>
<td>CANDU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Multi-physics Pellet Cladding Mechanical Interaction Validation (MPCMIV) Benchmark</td>
<td>PWR</td>
<td>High fidelity vs. low fidelity + comparison to experimental data</td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead Fast Reactor Benchmark</td>
<td>LFR</td>
<td>Fast flux & depletion</td>
<td></td>
<td></td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>HTGR T/H based on measurements at HTTF Facility, Oregon State (USA)</td>
<td>HTGR</td>
<td>Simulations vs. Experiment</td>
<td></td>
<td>No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

+ Several completed benchmarks distributed by NEA Data Bank (HTGR, PBMR, LWR, ...) focusing on different physics aspects
Reactor Single- and Multi-Physics Benchmarks : Current Activities

Three major new initiatives:

1. Migration of all benchmark activities to SharePoint
 → Improved data exchange

2.

3.
Reactor Single- and Multi-Physics Benchmarks: Current Activities

Three major new initiatives:

1. Migration of all benchmark activities to SharePoint ➔ Improved data exchange

2. Started initiative to build database with usage of codes in benchmark initiatives ➔ Feedback to code developers ➔ Collect input decks and implement CI processes

3.
Reactor Single- and Multi-Physics Benchmarks: Current Activities

Three major new initiatives:

1. Migration of all benchmark activities to SharePoint ➔ **Improved data exchange**

2. Started initiative to **build database with usage of codes in benchmark initiatives** ➔ Feedback to code developers ➔ Collect input decks and implement CI processes

3. Prepare benchmarks as „**Student Training Sessions**“, which can be used in class-room session or as remote classes on NEA LMS platform:
 - Existing specifications as basis for exercises
 - Exercises based on sample problems
 - Provide docker environments with all required tools by NEA DB (software tool chain must be open source or accessible via NEA DB);
 - Delivery Format: webinars and in-person trainings

➔ **Direct connection to NEA Global Forum’s Working Group 2, TF3**
WPRS Zero Power Reactor (ZPR) Task Force

Status:
- Mandate accepted at WPRS 02/2022 meeting
- Kick-off in 09/2022

⇒ Next: Stakeholder interviews

The demise of ZPRs – From concern to action

TF scope and mandate ← from proposal made to, and approved by, the NSC and WPRS

- Foster joint actions & collaborations centred on the remaining facilities, so that the situation (ZPRs and expertise) does not further deteriorate
- Update the 2009 OECD/NSC report in the form of a shorter document, specific to ZPRs (and criticality-safety facilities?), rather than as an update of the full original report
- Make a stronger case for ZPRs, to dispel some misunderstandings, justify the needs, and motivate restoring some experimental infrastructure → scientific motivation document, by a panel of international experts
- Consider actions to increase awareness at the decision-makers’ level

“It was often a race between the theorists and the experimenters as to who could come up with a clue first, and experimenters usually won that race. Nature is a lot cleverer than we are, and if you can steal her secrets by observation, it's a lot quicker than trying to re-invent them.”

David Gross, Nobel Prize Laureate, 2004

Source: Presentation R. Jacqmin at WPRS 02/2022
Nuclear Data Sensitivity Tool (NDaST)

J. Dydra, I. Hill, N. Soppera

Benchmarks (Sensitivities) → Nuclear Data (% Change or Covariance) → Integral Results

- XML and GUI Input
- Database of over 4000 Sensitivity Data Files
- MF32/MF33
- Users can add MF31
- No MF34. Will come in the future.
- User defined covariance data
- Support added for MCNP6.2 created TSUNAMI3D format following JEFF 2021 winter meeting

Selected / load benchmarks sensitivities (S) & C/E data

DICE, IDAT

Personal Numerical Benchmarks

User Input Perturbation (P)

- isotope/reaction/energy cross section

Covariance data via JANIS (C)

- Built in processed data for major libraries
- Load personal (coverx)
- M energy groups (fixed)

S*P

\[\Delta k_{\text{eff}} \] for selected cases

C/E output plot grouped by criteria

S*C*S*\ T

\[U_{c(xS)} \] for selected cases

Additional uncertainty on output plot grouped by criteria

Matrix plot showing individual contribution to \[U_{c(xS)} \] by isotope-reaction

JANIS MF33: ENDF/B-VII.1 = 2138 files, JEFF-3.2 = 5688 files
JENDL-4.0 = 2155 files, TENDL-2013 = 77811 files, SCALE6.2

www.oecd-nea.org/ndast
NDaST – GUI and Command Line

J. Dydra, I. Hill, N. Soppera

- **NDaST GUI tools** have been necessary to trouble shoot suspicious results. Linear perturbation theory, and the number of options depending on the exact code/library/benchmarks/covariance isn’t a oiled machine.
- **NDaST command line:**

 Usage: `<input> <output> [OPTIONS]...`
 `<input>` : NDaST file with input parameters (sensitivities plus and/or covariances)
 `<output>` : NDaST file with input parameters and calculation results

 Options:
 - `-q, --quiet` : suppress all messages except errors
 - `-od, --off-diagonal` : compute off-diagonal terms (cases/sensitivities representativity, aka 'Ck')
 - `-f, --force` : allow overwriting output file

- Lots of potential for NDaST to integrate with other data sources, tools.
- NDaST API coming soon!
- Look for more training resources in 2022
- **Contact: Ian Hill** (ndast@oecd-nea.org)

www.oecd-nea.org/ndast
Updates @ NEA DB
NEA Data Bank - Work Areas

The Data Bank is a ‘Centre of Reference’ for computer codes, nuclear data and knowledge preservation – with MBDAV overseeing the delivery of outputs.

Intermediate Output Results (IORs) are **services** benefiting the Data Bank member countries:

1. **Computer Program Services (CPS)**: Acquisition, licensing, testing and distribution of computer codes, and organisation of training courses.

2. **Nuclear Data Services (NDS)**: Compilation of measured nuclear reaction data (EXFOR), co-ordination of the Joint Evaluated Fission and Fusion (JEFF) project and related tool development.

3. **Databases of Experiments and Nuclear Knowledge Management**: Preservation and distribution of data (including NEA joint projects and benchmarks) and support for training and educational activities.
NEA Data Bank - Updates on Technology

1. **New GitLab instance with on-site Harbor, Docker and NEA CI cluster** and launched in March 2022 that supports CPS and NDS activities. This is a long-term solution following pilot projects with limited functionality.

2. **New Canvas LMS (eLearning)** launched in April 2022 with first course pilot on the open source OpenMC code. A new blockchain-based credentialing system with social media integration is in progress (**Accredible**).

3. **SharePoint MyNEA** to replace oecd-nea.org/download was launched in May 2022 (where MBDAV content is now stored). This will be used for official meetings for JEFF and other DB restricted file content management.

4. **More in progress** including a public SharePoint system for machine-readable data storage (coming Q4 2022) and static-site-generated content for advertisement of NEA GitLab and associated system content.
NEA Data Bank - CPS new working methods

- Direct engagement with developers through the NEA GitLab **NOT** to ‘only’ use the GitLab platform as a repository service, but to leverage several other services:
 - Move CPS quality checks into a transparent, collaborative and reproducible system
 - Containerise code for use in other NEA pipelines (e.g. data processing, benchmarks)
 - Create portable images with code (and/or other content) for a range of user needs, including education and training activities
- Example – release in May 2022 of Serpent-2 (VTT, Finland) Monte-Carlo code
 - Cutting-edge nuclear data and benchmarks directly integrated into overall package
JEFF nuclear data

- JEFF collaboration is developing a cutting-edge 4.0 library for general-purpose applications
- Adoption of GitLab-based workflows to manage the project, test the data in real time and directly integrate it with computer codes of DB, processing and validation with suites of NEA benchmarks
- Now releasing automatic SCALE, SERPENT-2, FISPACT-II and other data libraries in a variety of formats (including GNDS) https://www.oecd-nea.org/dbdata/jeff/jeff40/t1/
- 'T2' library planned announcement November 2022

Verified data provided direct to software partners
Conclusions

• Integral benchmark activities for radiation transport under the auspices of the NEA Nuclear Science Committee
 • ICSBEP, IRPhE, SINBAD, SFCOMPO under continuous development
 • New maintenance process for SINBAD
 • Reactor Single- and Multi-Physics Benchmarks: potential for improved feedback to code developers and education outreach

• Nuclear Data Sensitivity Tool (NDaST)
 • Continue development of tools that give rapid or continuous performance assessments of new nuclear data libraries (months → minutes)
 • Incorporate legacy experiments (and proprietary data)
 • Time to integrate more application cases in testing!

• Updates at NEA DB
 • New technologies to implement continuous testing: GitLab, Docker, Harbor
 • JEFF nuclear data: test the data in real time

→ Looking forward to discussing cooperation in CoNERC project
Conclusions

• Integral benchmark activities for radiation transport under the auspices of the NEA Nuclear Science Committee
 • ICSBEP, IRPhE, SINBAD, SFCOMPO under continuous development
 • New maintenance process for SINBAD
 • Reactor Single- and Multi-Physics Benchmarks: potential for improved feedback to code developers and education outreach

• Nuclear Data Sensitivity Tool (NDaST)
 • Continue development of tools that give rapid or continuous performance assessments of new nuclear data libraries (months → minutes)
 • Incorporate legacy experiments (and proprietary data)
 • Time to integrate more application cases in testing!

• Updates at NEA DB
 • New technologies to implement continuous testing: GitLab, Docker, Harbor
 • JEFF nuclear data: test the data in real time

→ Looking forward to discussing cooperation in CoNDERC project

Ideas for common efforts:
1. Benchmark gap analyses and new evaluations
2. Tool chains for data processing and continuous testing (CT)
3. Consolidate test cases
 - Additional sensitivities
 - Correlations (essential for ML/AI)
 - Pre-/Post-Proc for CT
 - Prioritization
4. Best practise CT/hosting
5. Participation in NEA bodies
Thank you for your attention

Please contact wprs@oecd-nea.org if you have questions related to this presentation.
Backup
SINBAD: Iterative Maintenance and Releases

Continuous Development in NEA GitLab:

- Data acquisition
- Maintenance to next maturity level
- Release

SINBAD Distribution by RSICC and NEA DB

User

User

User
WPRS - Benchmarks for Education

- WPRS produced comprehensive sets of benchmarks: Reactor Physics, Thermal-Hydraulics, Multiphysics, Shielding (SINBAD)

- Prepare benchmarks as „Student Training Sessions“, which can be used in class-room session or as remote classes on NEA LMS platform:
 - Existing specifications as basis for exercises;
 - Exercises based on sample problems:
 - Input deck sets provided by benchmark participants which include „Holes“, i.e. need to be adjusted/adapted;
 - Results need to be extracted/interpreted by students.
 - Provide docker environments with all required tools by NEA DB (software tool chain must be open source or accessible via NEA DB);
 - Include supplemental lectures on reactor technologies;
 - Final session with student presentations and expert attendance.

Delivery Format: webinars supported by NEA LMS platform

腩 Direct connection to NEA Global Forum’s Working Group 2, TF3
Zero Power Reactor (ZPR) Task Force

Status:
- Mandate accepted at WPRS 02/2022 meeting
- Kick-off in 09/2022

Next: Stakeholder interviews

TF scope and mandate ← from proposal made to, and approved by, the NSC and WPRS

- Foster joint actions & collaborations centred on the remaining facilities, so that the situation (ZPRs and expertise) does not further deteriorate
- Update the 2009 OECD/NSC report in the form of a shorter document, specific to ZPRs (and criticality-safety facilities?), rather than as an update of the full original report
- Make a stronger case for ZPRs, to dispel some misunderstandings, justify the needs, and motivate restoring some experimental infrastructure → scientific motivation document, by a panel of international experts
- Consider actions to increase awareness at the decision-makers’ level

“It was often a race between the theorists and the experimenters as to who could come up with a clue first, and experimenters usually won that race. Nature is a lot cleverer than we are, and if you can steal her secrets by observation, it’s a lot quicker than trying to re-invent them.”

David Gross, Nobel Prize Laureate, 2004

Source: Presentation R. Jacqmin at WPRS 02/2022
The Data Bank is a ‘Centre of Reference’ for computer codes, nuclear data and knowledge preservation – with MBDAV overseeing the delivery of outputs.

Intermediate Output Results (IORs) are services benefiting the Data Bank member countries:

1. **Computer Program Services (CPS)**: Acquisition, licensing, testing and distribution of computer codes, and organisation of training courses.

2. **Nuclear Data Services (NDS)**: Compilation of measured nuclear reaction data (EXFOR), co-ordination of the Joint Evaluated Fission and Fusion (JEFF) project and related tool development.

3. **Databases of Experiments and Nuclear Knowledge Management**: Preservation and distribution of data (including NEA joint projects and benchmarks) and support for training and educational activities.
DB eLearning

- Easy implementation even with short time frame (tool available less than two weeks before the course)
- Course naturally defined with module and syllabus tools to structure content
- The course took place on Zoom and all course content was accessed through Canvas
- Assignments and reviews conducted in the system significantly increased engagement
- Positive feedback from participants and teachers – pilot OpenMC will be repeated in October 2022! FISPACT, PHITS, SCALE, IRPS, and more already in 2022 with more to come
Credential System

- Accreditable credential system will issue digital badges
- Badges sharable e.g. with LinkedIn with blockchain verification
- NEA catalogue of courses and certificates
- Links to course, NEA and provider (if requested) to provide cachet, marketing and publicity
- Describing outcomes and exercises increases value
- Assignments and pass/fail integrated into Canvas before issuing credentials
- Launched in June 2022