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BEAVRS Benchmark

» What is it?

» The BEAVRS benchmark is a 4-loop PWR description of an operating US reactor
which provides measurement data for the first 2 cycles of operation.

» Why we did it?

» As part of work at MIT on the development of high-fidelity simulation tools for full
core reactor analysis, there was growing concern that the community lacked a
proper benchmark to truly test and validate these methods.

» Real assembly design
Real enrichment data
Real power distribution

>

>

» Real core shuffling pattern

» Real burnable poison distribution
>

N. HORELIK, B. HERMAN, B. FORGET, K. SMITH, “Benchmark for Evaluation and Validation of
Reactor Simulations (BEAVRS)”, Proc. M&C 2013, Sun Valley, Idaho, May 5-9, 2013.




» 193 fuel assemblies

DeSC ri ption » 8 grid spacers

» Different top/bottom and intermediate spacers

» No design provided but weight known

Table 1: Summary of key model parameters.

» Pyrex burnable absorbers Core Lattice Source
» Asymmetric pattern No. Fuel Assemblies 193 1
. . Loading Pattern w/o U235
» Exact as-built enrichment known for each Region 1 (cycle 1) 1.60" 1
. .. . Region 2 (cycle 1) 2.40" 1
individual fuel location Region 3 (cycle 1) 3.107 1
Region 4A (cycle 2) 3.20'" 1
Core Barrel Region 4B (cycle 2) 3.407 1

Pressure Vessel Neutron Shield Panel Cycle 1 Heavy Metal Loading 81.8 MT 3

Fuel Assemblies

Pin Lattice Configuration 17 x 17 4
Active Fuel Length 365.76 cm 5
No. Fuel Rods 264 4
No. Grid Spacers 8 4
Control
Baffle RPV Liner Control Rod Material (Upper Region) B4C 57
Control Rod Material (Lower Region) Ag-In-Cd 56
No. Control Rod Banks 57 1
No. Burnable Poison Rods in Core 1266 1
Burnable Poison Material Borosilicate Glass, 12.5 w/o B,04 4
Performance
Core Power 3411 MWth 6
Operating Pressure 2250 psia 6

Core Flow Rate

61.5 x 10°kg/hr (5% bypass®)




Complexities
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Figure 25: Detailed scale view of burnable absorber pins in cycle 1, showing proper rotations.
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Figure 9.2-3 Movable Detector System




Post-Processing

» Normalized “flux”/detector signal obtained by removing the background (B) from
the detector signal (D), multiplying by the gain (G) and dividing by core power

(Djj — Bij) X Gj;
P

Gijk =

» However, data is not directly usable 0.03 .

0.025

» Misalignment of data

0.02

» Missing data points
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» Data not continuous
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Figure 41: Initial Raw Detector Measurements (top to bottom).

S.KUMAR, J.LIANG, B.FORGET, K.SMITH “BEAVRS: An Integral Full Core Multi-Physics PWR
Benchmark with Measurements and Uncertainties”, Progress in Nuclear Energy, 129, 2020.




Post-Processing

>

Detector Signal [-]

Missing data points are removed through interpolation/extrapolation using

nearest 2 neighbors

Misalignment is corrected by assuming that grid depressions are all at the

same axial level

Second-order spline fit is performed to map axial data from top of active fuel

to bottom of axial fuel
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Uncertainties

>

Detector uncertainties were processed to include measurement
and post-processing uncertainties.
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Cycle 1 of BEAVRS includes 180 cases where multiple
measurements were performed.

» Cases of similar detector signal magnitude were grouped to provide
better estimate of variance

» 10,725 measurements were divided in 30 signal amplitude groups

Missing data, re-alignment and spline fitting uncertainties were
estimated by comparing measured data to interpolated data in
case with known information, and by assuming possible
misalignment by 1 axial position
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Uncertainties

» Lookup tables were generated using the repeated measurements and
correction assessment such that uncertainty plots can be estimated
for each measured assembly.

» Axially-integrated uncertainties were also calculated

» An independent approach was used based on simulation results to
estimate axially-integrated uncertainties

» Assumption is that deterministic code will predict short-term burnup
trend well and that measurement fluctuations from prediction will be
caused by measurement uncertainties

Cycle 1 Readings for Assembly D10
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Fig. 17. Reaction rates for CASMO/Simulate and BEAVRS
data for Assembly D10 at 1.02, 1.51, and 2.16 MWd/kg.

Liang, J., Kumar, S., Forget, B., Smith, K., 2017. Quantifying Uncertainty in the
BEAVRS Benchmark, M&C 2017, Jeju, South Korea, 2017.
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Uncertainties of Radial Map (95% CI)

» The measurement uncertainty (95% Cl) is on
the order of 1.5% regardless of the method
used to assess the uncertainties.

Method of Uncertainty Quantification
Fitting
Theoretical Simulate
Multiple Analysis of Burnup
Measurements Axial Trends to
Uncertainties BEAVRS
data
Cycle 1 1.8% 1.4% 1.6%
Cycle 2 1.5% 1.4% 0.9%
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» Material Compositions Grid Spacer was approximated as to

» Missing as-built data converse height and massfﬂ

» Gaps between assemblies/core loading Bottom of Upper Nozzle

Top of BPRA Rod Upper Plenum

Boron isotopics

Top of Fuel Rod

Data transcription errors

Top of Fuel Rod Upper Plenum

Grid spacer design

Top of RCCA Rod Upper Plenum

vV v v Vv

Upper and lower plate designs T [N

Wil Grid 8 Top

Upper (and lower) plate were approximate 1, o sema rod avsorver
while leaving room for rods and water flow

Grid 8 Bottom

Bottom of RCCA Rod Upper Plenum

Top of Active Fuel




Cycle 1 Complete Power History
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Stanislas de Lambert Des Champs de Morel, “Contribution a (
-I-_i l t de la déformation d’assemblage,” These Université Paris-Sacla

» Despite the core being fully-octant symmetric by design
(with exception of instrument tubes), the measurements
exhibit a large power tilt

» The cause of the tilt is largely unknown but suspected to
be caused by uneven water gaps between assemblies
during core loading

Neighbour fuel assembly
Neighbour fuel assembly

» Inlet plenum mixing is also a cause for concern, but
generally doesn’t lead to tilts of this magnitude on its own.

AL LR L

§
— - — -

D.Y.Sheng, M.Seidl, “Towards the development of a full-sca
Model to simulate the static and dynamic in-core mass fl
classical German PWR, NURETH-16, Chicago, IL, 2015.




Tilt-Correction

—— X Direction
—*—Y Direction

» To make the data useful, a tilt-correction was proposed
which identified a linear plane that would best correct the
asymmetry of the data

» This plane was then used to “correct” the detector signals for
comparisons with high-fidelity codes
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» The linear tilt was also observed to decrease throughout
operation, with the hypothesis being that thermal expansion
evened out the gaps
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E. Sykora, “Testing the EPRI Reactivity Dep
Uncertainty Methods,” MIT MS Thesis, 20




Tilt-Correction Impact on Uncertainty

» Brute force optimization approach was used to identify a water gap
distribution in CASMO/SIMULATE that would best represent the measured data

» Linear tilt-correction is then applied to both the measured data and the
tilted-model

Inter-grid area Y,

Uncertainty Quantification Methods Based on CASMO/SIMULATE Model

- A
CASMO/SIMULATE Model (before CASMO/SIMULATE Model (after 5 depending on the
tilt-correction UQ) tilt-correction UQ) bl
Cycle 1 0.8% 1.8%
Cycle 2 0.9% 1.9%

1ne

Table 9

Summary of 95% Cl of BEAVRS uncertainty quantification using CASMO/SIMULATE _
model.

S.Kumar, Quantifying time-dependent uncertainty in the BEAVRS
benchmark using time series analysis, MIT MS Thesis, 2018




Lessons Learned

» Real systems are very complex

» While relatively simple, real systems have many complexities that can make them
difficult to model with many modern tools

» Even when trying to be rigorous and detailed, there is always missing design
information

» Real systems are difficult to use for validation

» There are many unknowns that cannot be easily measured of accounted for

» They also lack the level of measurement precision

» Symmetric on paper is rarely symmetric in real life!




Monte Carlo Results

» Models have been developed for the following Monte Carlo codes:
» OpenMC
MC21
Serpent
MCNP
JMCT
SuperMC
RMC
MVP
MCS
McCARD

vV vV vV v vV v v v v.Yy




Low Power Physics Tests - Rod Worths (pcm

Rod Worth |Measured OpenMC MC21 JMCT MVP RMC SuperMC MCNP6 Serpent
D 788 771 773 770 787 798 779 775 785
C 1203 1234 1260 1258 1248 1233 1266 1250 1247
B 1171 1197 1172 1162 1230 1148 1180 1206
A 548 556 574 578 517 496 567 558 527
SE 461 501 544 543 473 475 532 488
SD 772 844 786 781 791 798 791 767
SC 1099 1049 1122 1107 1119 1137 1114 1110 1105
-17 -15 -18 -1 10 -9 -13 -3
31 57 55 45 30 63 47 44
26 1 -9 59 -23 9 35
8 26 30 -31 -52 19 10 -21
40 83 82 12 14 71 27
72 14 9 19 26 19 -5
-50 23 8 20 38 15 11 6

Notes: - Not all codes were run by their home institution
- These may not represent the latest results
- Most results are based on ENDF/B-7.1, but not all
- Everyone presents results slightly differently making them hard to compare




Run strategies

» There is a large variation in run strategies:
» 4 million/batch, 1000 batches (400 discarded)
» 4 million/generation, 50 generation/batch, 30,000 generations (250 discarded)
» 120 billion active neutrons to achieve true variance below 1% on 95% of pellets
1 million/batch, 750 batches (200 discard)
500,000/batch, 200 batches (50 discard)
500,000/batch, 350 batches (150 discard)
200,000/batch, 400 batches (200 discard)
10,000/sub-cycle, 300 sub-cycles/cycle, 44 cycles (4 discard)

... and some provide no information

vV v v v v v.yY

... some also used acceleration techniques like CMFD to reduce discarded batches




Population Variance (1M/batch)

k-eff at each cycle
cumulative k-eff

1.03 +

1.024 H.J.Park, H.C. Lee, J.Y. Cho, H.J. Shim, C.H.

Estimation of BEAVRS Benchmark in McCARD M

1.014"" Eigenvalue Calculations”, M&C 2015

1-00_: .. .l.-

K-effective

0.99 +

0.98 s, " . L

0.97 4

2(I)0 l 4CI)0 ' 6(I)0 l 8(I)0 ' 1 OIOO
Cycle

» From CMFD, we determined that the dominance ratio of this core is on the

order of 0.995.
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Radial Distributions

» Results that rejected fewer than 100
batches exhibit discrepancies on the
order of 2-3% from converged solutions

» Massive in/out tilt

» Some simulations with very few particles
per cycle/batch produced very distorted
axial profiles

» Very few codes have attempted depletion
over 2 cycles with TH coupling

» Large tally cost

» Convergence issues

10
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14

15

HZP Detector Measurements
MC21
% Diff (MC21 vs Measured

0.964 0.920

0.970 0.901

0.7% -2.1%
0.968
0.931
-3.8%

Assembly Loadmngs
2.4 wlo

U235




Source Convergence

>

To properly understand source convergence, we
developed a new diaghostics based on functional
expansion tallies

» lIdea is that high order FETs will exhibit the noise of the
system, and that the best possible convergence will be
achieved when the lower order modes reach that same
noise level.

» Convergence differs based on the number of
neutrons/batch

Initial idea was developed based on discrete Fourier
transforms that were post-processed from fine mesh
tallies

It was then extended to FETs since they can be
directly tallied

Convergence is determined based on moving
averages over a given number of cycles compared to
offset of previous batch of cycles

102
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» Luckily, the power predicted power profile
of this core is quite flat such that a
uniform guess of source sites is a great
initial guess

» FET and Shannon-based stationarity criteria
indicate needing ~100 batches when using
~1M/batch

» At this level, the modes have been reduced
to the noise of the simulation

» However, the real problem is tilted from
unknown geometrical irregularity, what
would it take to converge this tilted
problem?

» Surrogate was developed by instead using a
tilted source along y-axis

» Under this scenario, ~600-800 batches must
be discarded when using 10° to 107
neutrons/batch
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Deterministic Results

» BEAVRS benchmark was also used to demonstrate accuracy and efficiency of determi
transport codes

Table 4. Comparison of BOC1 HZP control rod worth with

» Nodal Methods: SIMULATE, PARCS, PANTHER, PARAGON, KMACS, ... measurements and OpenMC.

CRW

» 2D/1D: nTracer, DeCART, MPACT, MAMMOTH, ... Case Measured pom TTRACER OpenhC'

» 3D MOC: OpenMOC (HZP only) D 788 776 (—12)* 771 (—17)
Cwith D in 1203 1210(7) 1234 (31)
B with D, C in 1171 1230 (59) 1197 (26)
A with D, C. Bin 548 535(=13) 556 (8)
SE with D, C, B, A in 471 455 (=16) 501 (30)

» Deterministic codes demonstrated similar accuracy to MC
*Numbers within the parenthesis are the difference from the measured
value in pcm.

> Also performed deplet]on over 2 CyCleS! TThe standard deviation of the OpenMC cases is about 5 pcm.

» Performance is order of magnitude better \
» Seconds for nodal methods per state point Table 6
Comparison of control rod bank worth by various reactor physics code calculations.
> 10'100’5 hOUf'S f0r 2D/1 D per State pOint Case Difference of CRBW (%)a
: [6] [7] [8]
» 1,000-10,000’s hours for 3D MOC per state point DeCART VERA * nTRACER © PARCS 7 McCARD
D with ARO 0.5 2.0 15 3.3 4.2
» 10,000-100,000’s hours for 3D MC per state point Cwith D in —44 =35 —0.6 45 0.6
B with D, C in -7.2 -038 -5.0 ~113 4.7
A with D,.CB in 7.3 -35 2.4 31.8 -0.3
SE with D,CB,Ain 0.8 2.1 3.4 27.4 ~11.1
Total 24 -13 -0.8 5.8 0.7

4 Difference of CRBW (%) = {CRBW(Measurement) — CRBW(DeCART)}/
{CRBW(Measurement)} x 10%.




Issues in modelling

>

>

>

>

>

Complexity!
» Lots of cells and surfaces - broke initial OpenMC XML reader
Costly for Monte Carlo (and 3D transport)
» Lots of particles needed, lots of cycles to model non-symmetric system
» Lots of storage needed for reaction rates and nuclides
» Convergence is costly
Removal of Pyrex

» Burnable absorbers must be removed from guide tubes after cycle 1, before
shuffling into cycle 2

Thermal expansion in high-fidelity codes

» The use of lattices and replication makes it hard to capture thermal expansion or
every region

» Nodal methods capture this easily during lattice calculations

Fuel shuffling



Final Remarks on BEAVRS Benchmark

» There is a need for large scale realistic benchmark for validation

» They challenge the community is developing codes and methods focused on the real
applications.

» It identifies gaps and limitations of codes and run strategies.
» The BEAVRS benchmark however is limited in its usefulness
» Power history is very jagged making it difficult to assume an equilibrium of fission products.

» Tilt is quite large, leading to large uncertainties in measurements.

» Newer data is needed that includes good power history, detailed measurements,
redundant cores, ...

» New construction sites have many replicas of exact first cycle core loads

» Updated core instrumentation logs 610 axial measurements
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PART II: Analytical Benchmark




Analytical Benchmark

» What is it?

» Goal was to derive an analytical benchmark of
the transport equation to validate our
uncertainty quantification methods

» Provides forward and adjoint solution

» Additionally, it provides validation of continuous
energy Monte Carlo
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Assumptions

Infinite Medium

Scattering isotope of mass 1 (no Plazcek transients)
No upscattering

Steady-state (alpha = 0) and exactly critical (k=1)

Energy independent fission spectrum

vV v v v v Y

No external sources




Solution

» A few definitions

a A () N A sz(E) A Lo
DR A R R(E)EEE) wo(E) [ prar
» Total reaction rate (alpha-mode)
_ . EJ, -
o D (IdEN
Ry(F) =F, x(E)JrJ W(ENDs*(Eer " dE'
E
» In k-mode
rE
E E f}' Ry (E) = % %(E’) er dL’
> > Ds ., JEt
kzj H(E) [X(E) +[ Y(ENDs(E') e+ dE}dE : ;
0 L Fk - / / | Ds /
=% x<E>+jE A(EDs(E') ¢t dE}




Special case - Step fission spectrum

» By simplifying the fission spectrum and defining the cross-sections using a
pole/residue representation

™

Uy

W(E) = xol[E < L] Ds'(x) =3

» We can obtain analytical solutions for all of our quantities of interest




A simple benchmark

Quantitative Description of the Benchmark Inputs

Material Fission Isotope Capture Isotope Scattering Isotope
Lowest lying resonance of Lowest lying s-wave

Description 9Py resonance of 28U Flat scattering cross section
N 1.00 0.124954 0.008340505
v 2.88 0 0
2 3/4 1
Ey (eV) 2.956243¢-1 6.674280e+0
I, (eV) 7.947046e-5 1.492300e-3
Iy (eV) 3.982423e-2 2.271100e-2
Iy (eV) 5.619673e-2 9.880000e-9
a. (10712 cm) 9.410000e-4 9.480000e-4
o, (b) 20.0
Po 0.002196807122623 x 1/2 0.002196807122623 x 1/2 0.002196807122623 x 1/2

» Picked data such that k = 1

» 2 resonances and a scatterer (H-1)

Flux

Reaction rate
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