

THE AUSTRALIAN NATIONAL UNIVERSITY

Treatment of uncertainties using Monte Carlo (UncTools)

Atomic Radiations in ENSDF (NS_RadList)

T. Kibèdi, B. Tee and B. Coombes (ANU)

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

NSDD, 4-7 April 2022, IAEA

Two-state mixing model

E0 strength parameter,
$$\rho^2$$
(E0):
 $\rho^2(E0) = \left(\frac{3}{4\pi}Z\right)^2 \alpha^2 (1-\alpha^2) [\Delta(\beta^2)]^2$

$$A^0Ca 3353 \text{ keV E0}$$
 $\rho^2(E0)=0.0259(16)$
 $\Delta(\beta^2)=0.073(27)$

$$\Delta(\beta^2)=0.073(27)$$
Solution:
 $\alpha_{1,2}^2 = \frac{b \pm \sqrt{b^2 - 4ac}}{2a}$
 $a = +1; b = -1; c = \frac{\rho^2(E0)(4\pi)^2}{(3Z\Delta(\beta^2))^2}$

□ <u>Python Uncertainty</u> (analytical, from numerical derivatives) $\alpha_{1,2}^2 = 0.3$ (4) or 0.7(4)

NIST Uncertainty Machine (Monte Carlo) Could not run; negative "b²-4ac" detected

 $\Box \frac{\text{UncTools (Monte Carlo)}}{\alpha_{1.2}^2} = 0.18(+12-7) \text{ or } 0.82(+7-12)$

Experimental quantitates in ENSDF

- □ Single <u>unsigned or signed</u> number
- □ Standard <u>symmetric</u> or <u>asymmetric</u> uncertainty
- □ <u>Limits</u>
- Uncertainty propagation in ENSDF codes:
- □ Taylor expansion, only valid for
 - a) Linear or nearly-linear relations/equations
 - b) small DX/X values
 - c) Correlations neglected

For multi-variant functions (BrIcc, Ruler, Gabs, Gtol) uncertainty propagation is <u>difficult</u>

<u>Solution</u>: Bayesian (Monte Carlo) uncertainty propagation

- Evaluation of measurement data Supplement 1 to the "Guide to the expression of uncertainty in measurement" — Propagation of distributions, JCGM 101:2008 (Joint Committee for Guides in Metrology)
- 2) M. Cox, A. O`Hagan, Accreditation and Quality Assurance 27 (2022) 19-37

GUM framework

Monte Carlo simulations to obtain the output quantity

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

THE AUSTRALIAN NATIONAL UNIVERSITY

Value of the output quantity

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

NSDD, 4-7 April 2022, IAEA

THE AUSTRALIAN NATIONAL UNIVERSITY Uncertainty of the output quantity

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

BrIcc – calculating mixed ICC MR is unknown

¹⁶⁸Yb 1144.9(6) M1+E2

□ ENSDF assigned as E2+E0, but M1 could not be excluded

BrIcc:

CC=[CC(M1)+CC(E2)]/2 DCC=|CC(M1)-CC(E2)|/2 CC = 0.0040(12)

CC(M1)=0.00515 *CC*(E2)=0.00283

BrIcc - calculating mixed ICC MR is unknown

¹⁶⁸Yb 1144.9(6) M1+E2

□ ENSDF assigned as E2+E0, but M1 could not be excluded

<u>BrIcc:</u>

CC=[CC(M1)+CC(E2)]/2 DCC=|CC(M1)-CC(E2)|/2 <u>CC = 0.0040(12)</u>

CC(M1)=0.00515 *CC*(E2)=0.00283

<u>UncTools</u>: MR uniform in [0 : 10]

$$CC = \frac{(CC(M1) + MR^2 \times CC(E2))}{1 + MR^2}$$

M1 [100% : 1%]; E2 [0% : 99%]

Closer to E2 than M1
 Uncertainty significantly smaller & asymmetric

Is the GABS calculation correct? Shamsu Basunia

¹⁸⁶Ta β^- decay scheme normalisation (GABS): NR=0.50(5)

E	RI	%IG		
122.3	50(7) <mark>14%</mark>	25.1(12) <mark>4.8%</mark>		
737.5	58(4) <mark>6.9%</mark>	29.1(32) <mark>11%</mark>		
1284.0	0.5(25)	0.3 (13)		
1322.0	0.60(30)	0.30 (15)		

— <u>Is this correct?</u> NUDAT/LiveChart: %IG=25(4) 16%

CalibSinglesDS.f90: lines 254-266:

$$\% IG_i = \frac{(100 - IGS) \times RI_i}{\sum_{j}^{1,N} RI_j \times (1 + CC_j)}$$

Calculating %DIG(122), DRI(122) is used in the nominator and denominator %DIG could be overestimated!

Filip`s talk on absolute gamma intensities

UncTools Script

.

Comparison with java-Ruler (version 4-Apr-2022)

177HF L 321.3162 4 9/2+ 0.665 NS 16							
177HF G 71.6418 6 1.58 5 <mark>E1+M2 -0.018 9</mark> 0.89 6							
		Java-Ruler	UncTools				
	СС	0.89(6)	0.89(+5-3)				
	BE1W	1.24E-5(5)	1.24E-5(5)				
	BM2W	3.6(+45-27)	4(+5-3)				
177HF G 208.3662 4 100.0 14E1+	M2 +0.0	076 19 0.068 9					
	СС	0.068(9)	0.068(+8-6)				
	BE1W	3.17E-5(8)	3.17E-5(8)				
	BM2W	19.3(+104-85)	19(+11-8)				
177HF G 321.3159 6 2.10 4 E1+M2 +0.175 10 0.0354 21							
	СС	0.0354(21)	0.0354(+20-19)				
	BE1W	1.77E-7(6)	1.77E-7(6)				
	BM2W	0.242(+29-28)	0.241(+29-27)				

Comparison with java-Ruler (version 4-Apr-2022)

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

Comparison with java-Ruler (version 4-Apr-2022)

Handling non-physical solutions

Solution:

$$\alpha_{1,2}^2 = \frac{b \pm \sqrt{b^2 - 4ac}}{2a} \quad a = +1; b = -1; \quad c = \frac{\rho^2 (E0) (4\pi)^2}{(3Z\Delta(\beta^2))^2}$$

Input parameters sampled up to +/- 5σ are all valid. Plugging them into the equation gave non-physical solution: $\Delta(\beta^2) < 0.06 \rightarrow [b^2 - 4ac] < 0$

- NIST uncertainty machine: DO NOT proceed
- UncTools: Dump this trial and take a new sample of the input parameters

keV EO

Handling non-physical solutions

40 -

$$\rho^{2}(E0) = \left(\frac{3}{4\pi}Z\right)^{2} \alpha^{2}(1-\alpha^{2})[\Delta(\beta^{2})]^{2}$$

$$P^{2}(E0) = 0.0259(16) \Delta(\beta^{2}) = 0.073(27)$$
Solution:

$$\alpha_{1,2}^{2} = \frac{b \pm \sqrt{b^{2} - 4ac}}{2a} \qquad a = +1; b = -1; c = \frac{\rho^{2}(E0)(4\pi)^{2}}{(3Z\Delta(\beta^{2}))^{2}} > 0$$

$$A(\beta^{2}) > 0.06$$

$$A(\beta^{2}) = 0.31(4)$$

$$A(\beta^{2}) = 0.31(4)$$

$$A(\beta^{2}) = 0.31(4)$$

$$A(\beta^{2}) = 0.31(4)$$

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

NSDD, 4-7 April 2022, IAEA

UncTools - Summary

- □ A <u>script</u> driven tool to propagate uncertainties using Monte Carlo
- Input parameters (normal, skewed normal and limits, max 8000) <u>sampled</u> and propagated through equations (max 1000)
- Parse full ENSDF records & checks for errors
- Probability Density Function (PDF) of the output used to determine the value and uncertainty; based in input quantities <u>no assumption is made</u>
- Output = median (recommended); in most cases median & central value are close
- □ Uncertainty from <u>16% : 84% coverage</u> intervals (asymmetric PDF) or standard deviation (symmetric or nearly symmetric PDF)
- □ Can be <u>called from any application</u>, return values in XML: unctools <input script> -x
- Publication quality <u>plots</u>:

unctools <input script> -g

NS_RadList - beta version with B. Tee

Atomic transition rates from EADL (1991PeZY)
 Atomic transition energies calculated using RAINE (2002Ba85), with semi-empirical corrections (2020TEZY)

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

NSDD, 4-7 April 2022, IAEA

- □ Initial atomic vacancy from
 - □ EC & IC (nuclear decay mode);
 - Electron/positron bombardment
 - □ User specified distribution (from file)
- □ BrIccEmisDB (219 MB)
 - precalculated atomic spectra for Z=6 to 100 by putting an initial vacancy on K to O shells; 1 million simulations
 - □ Binned with 1 eV
 - □ X-rays and Auger electrons
 - Unbinned "raw" data 3.5 GB for expert use

Ns_radlist -n <ENSDF.file> -u -g

- Reads and parses ENSDF file; comprehensive error detection
- Evaluates EC rates using EC probabilities from 1995SzZY (planned to use BetaShape)
- Evaluates IC rates using BrIcc v3, Z up to 126 (2008Ki07, 20212Ki04), new Ω(E0) tables (2020Do01)
- "-u" propagates uncertainties in nuclear structure parameters (energy, intensity, mixing ratio, etc) using UncTools (10,000 MC trials)
- □ "-g" generates spectrum plots of the PDF □ Generates new ENSDF records

Ns_radlist -n 125I_EC.ens -u -g

```
# Program version: NS_RadList v1.0 (23-Mar-2022)
```

- # BrIccEmis: BrIccEmis (02-Mar-2021)
- # NSR Key: 2012Le09
- # Command line: -n 125I_EC.ens -g -u
- # ENSDF file: 125I_EC.ens
- # Parent: 125I
- # Daughter: 125TE
- # DecayMode: EC
- # Half Life: 59.400 D
- # \$Atomic relaxation from BrIccEmis (26-May-2021) 2016Le19
- # IM\$Absolute intensity per 100 decays; as defined by 1991PeZY,
- # uncertainties in theoretical X-ray emission probabilities are 10% fo
 # K and L shells and 30% for outer shells.
- # IM\$Absolute intensity per 100 decays; as defined by 1991PeZY, # uncertainties in theoretical Auger-electron emission probabilities are <15% for K and L shells (except for Coster-Kronig and super # Coster-Kronig transitions) and 30% for outer shells.

NOTE: uncertainties in atomic transition probabilities are NOT propagated

# NUCLEAR TRANSITIONS			
# ELECTRON CAPTURE ====			
# Trans E-decay	E_f	EC Prob.	Shell EC Prob.
# [keV]	[keV]	[/100 dec]	(1998Sc28)
EC - 1 150.27(6)	35.4925(5)	100	
K - 1			0.8007(+17-18)
L1 - 1			0.1519(+13-12)
L2 - 1			0.004133(34)
M1 - 1			0.0339(+7-6)
M2 - 1			0.000994(+20-19)
N1 - 1			0.0077(4)
N2 - 1			0.000214(12)
01 - 1			0.000473(27)
# EM transitions (Inter	nsity cutoff:	: 1.00E-03%	
# Transition	Energy [keV]]	Probability
#			[per 100 decays]
G_1	35.4925(5)		6.68(13)
G_1_CK	3.6725(5)		78.1(19)
G_1_CL	30.5945(+24-	-20)	10.67(+26-25)
G_1_CM	34.4996(+10-	-9)	2.14(5)
G_1_CN	35.3244(6)		0.421(10)
G_1_C0	35.4752(5)		0.0440(10)

# AUGER electro	<u>ns =====</u>	=======================================	==================
<pre># Transition</pre>		Energy [keV]	Probability
#	Mean	95% Confidence range	[per 100 decays]
Auger_Tot	0.598	[0.001 : 3.610]	1895(19)
Auger_Ktot	23.913	[21.795 : 29.947]	19.13(23)
Auger_KLL	22.516	[21.795 : 22.976]	12.91(+16-15)
Auger_KLX	26.450	[25.812 : 27.334]	5.63(7)
Auger_KXY	30.307	[29.751 : 31.452]	0.589(7)
Auger_Ltot	2.774	[0.124 : 3.983]	184.2(18)
CK_LLX	0.285	[0.063 : 0.533]	26.82(21)
Auger_LMM	3.044	[2.471 : 3.720]	121.1(+13-12)
Auger_LMX	3.673	[3.307 : 4.258]	33.95(35)
Auger_LXY	4.305	[4.027 : 4.799]	2.366(24)
Auger_Mtot	0.323	[0.021 : 0.626]	450(5)
CK_MMX	0.096	[0.009 : 0.246]	130.0(13)
Auger_MXY	0.416	[0.254 : 0.640]	319.8(33)
Auger_Ntot	0.016	[0.001 : 0.077]	1242(12)
SCK_NNN	0.016	[0.002 : 0.057]	181.6(18)
CK_NNX	0.033	[0.001 : 0.107]	110.4(11)
Auger_NXY	0.013	[0.001 : 0.076]	950(9)

Evaluated from 1 eV binned spectra

# X-rays ======	========		
# Transition		Energy [keV]	Probability
#	Mean	95% Confidence range	[per 100 decays]
X-ray tot	25.432	[3.778 : 31.693]	155.6(18)
X-ray Ktot	28.039	[27.203 : 31.693]	139.0(17)
X-ray KL2	27.203	[27.203 : 27.203]	40.1(5)
X-ray KL3	27.473	[27.473 : 27.473]	74.3(9)
X-ray KM	30.980	[30.944 : 30.995]	20.19(24)
X-ray KM2	30.944	[30.944 : 30.944]	6.81(8)
X-ray KM3	30.995	[30.995 : 30.995]	13.24(16)
X-ray KN	31.701	[31.693 : 31.704]	4.20(5)
X-ray KN2	31.693	[31.693 : 31.693]	1.398(17)
X-ray KN3	31.704	[31.704 : 31.704]	2.772(33)
X-ray Ltot	3.933	[3.339 : 4.590]	14.77(15)
X-ray Mtot	0.554	[0.250 : 0.882]	0.782(8)
X-ray Ntot	0.100	[0.078 : 0.167]	1.007(11)

Evaluated from 1 eV binned spectra

```
125TE1 AM E(Tot) = 0.598$ I(Tot) = 1895(19)$
125TE2 AM E(Ktot) = 23.913$ I(Ktot) = 19.13(23)$
125TE3 AM E(KLL) = 22.516$ I(KLL) = 12.91(+16-15)$
125TE4 \text{ AM E(KLX)} = 26.450\$ I(KLX) = 5.63(7)\$
125TE5 AM E(KXY)= 30.307$ I(KXY)= 0.589(7)$
125TE6 AM E(Ltot) = 2.774$ I(Ltot) = 184.2(18)$
125TE7 AM E(CK_LLX) = 0.285$ I(CK_LLX) = 26.82(21)
125TE8 AM E(LMM) = 3.044$ I(LMM) = 121.1(+13-12)$
125TE9 AM E(LMX) = 3.673$ I(LMX) = 33.95(+35-34)$
125TEa AM E(LXY)= 4.305$ I(LXY)= 2.366(+25-24)$
125TEb AM E(Mtot)= 0.323$ I(Mtot)= 450(+5-4)$
125TEc AM E(CK_MMX) = 0.096$ I(CK_MMX) = 130.0(+13)
125TEd AM E(MXY) = 0.416 I(MXY) = 319.8(+33-32)
125TEe AM E(Ntot) = 0.016$ I(Ntot) = 1242(12)$
125TEf AM E(SCK_NNN)= 0.016$ I(SCK_NNN)= 181.6(1
125TEg AM E(CK_NNX)= 0.033$ I(CK_NNX)= 110.4(+11
125TEh AM E(NXY)= 0.013$ I(NXY)= 950(+10-9)$
125TE1 XM E(tot) = 25.432$ I(tot) = 155.6(+19-18)$
125TE2 XM E(Ktot) = 28.039$ I(Ktot) = 139.0(+17-16
125TE3 XM E(KL2) = 27.203$ I(KL2) = 40.1(5)$
125TE4 XM E(KL3) = 27.473$ I(KL3) = 74.3(9)$
125TE5 XM E(KM)= 30.980$ I(KM)= 20.19(24)$
125TE6 XM E(KM2) = 30.944$ I(KM2) = 6.81(8)$
125TE7 XM E(KM3) = 30.995$ I(KM3) = 13.24(16)$
125TE8 XM E(KN)= 31.701$ I(KN)= 4.20(5)$
125TE9 XM E(KN2) = 31.693$ I(KN2) = 1.398(17)$
125TEa XM E(KN3)= 31.704$ I(KN3)= 2.772(33)$
```

New ENSDF records

- Absolut Auger & X-ray intensity
- Inserted before g.s. record
- D record with program version
- C records with notes on uncertainties from EADL

Output from Java-NDS (Jun Chen) Uncertainties will be added

NUCLEAR DATA SHEETS

¹³¹Cs ε decay (9.689 d)

Parent: ¹³¹Cs: E=0.0; $J^{\pi}=5/2^+$; $T_{1/2}=9.689 \text{ d } 16$; $Q(\varepsilon)=358.00 \text{ } 18$; $\%\varepsilon \text{ decay}=100.0$

Evaluation by A.L. Nichols, March 2021.

References: 1960La06, 1963Ly02, 1972Em01, 1974Pl04, 1975La16, 2005Ku10, 2006Kh09, 2006Vo04, 2008Si26, 2012Le09, 2016Le19, 2019Ka48, 2019Mo35, 2020TeZY, 2021Wa16.

X rays (^{131}Xe)

Transition(s)	E(X ray)	I(X ray) [†]	Transition(s)	E(X ray)	I(X ray) [†]	Transition(s)	E(X ray)	I(X ray) [†]
ТОТ	28.559	83.91	K-M2	34.925	3.697	K-O	35.980	0.2287
K-TOT	31.632	74.52	K-M3	34.993	7.193	L-TOT	4.488	8.648
K-L2	30.631	21.37	K-M4	35.252	0.03540	M-TOT	0.680	0.5394
K-L3	30.978	39.64	K-M5	35.266	0.05200	N-TOT	0.117	0.2050
K-M	34.972	10.978	K-N	35.828	2.307			

[†] Absolute intensity per 100 decays; as defined by 1991PeZY, uncertainties in theoretical X-ray emission probabilities are 10% for K and L shells and 30% for outer shells.

NOTE: Atomic transition
energies uncorrected!

Auger electrons (¹³¹Xe)

_		E(Augar)	Transarit	Transition(s)	E(Auger)	I(Auger)	Transition(s)	E(Auger)	I(Auger)
	Transition(s)	E(Auger)	I(Auger)	Transition(s)	E(Auger)	I(Auger)	Transition(s)	E(Auger)	I(Auger)
	TOT	0.707	900.7	L-LX	0.307	13.84	M-XY	0.492	162.7
	K-TOT	26.859	9.056	L-MM	3.387	60.65	N-TOT	0.030	570.7
	K-LL	25.218	6.046	L-MX	4.147	17.92	N-NN	0.011	10.816
	K-LX	29.727	2.719	L-XY	4.913	1.338	N-NX	0.047	141.0
	K-XY	34.161	0.2909	M-TOT	0.379	227.2	N-XY	0.024	418.9
	L-TOT	3.100	93.75	M-MX	0.097	61.96			

[†] Absolute intensity per 100 decays; as defined by 1991PeZY, uncertainties in theoretical Auger-electron emission probabilities are <15% for K and L shells (except for Coster-Kronig and super Coster-Kronig transitions) and 30% for outer shells.

BrIccEmis (02-Mar-2021) & NS_RadList v1.0 (23-Mar-2022)

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

Recent low energy electron measurements - ⁹⁹Mo/^{99m}Tc

⁹⁹Mo/^{99m}Tc source measurements to benchmark BrIccEmis & NS_RadList

- 2.2 MBq source on evaporated Al substrate
- Prepared by M. Roberts, P. Pellegrini, L. Hogan, F. Mansour and I. Greguric (ANSTO, Sydney)
- Experiments & Data analysis: B.P.E. Tee & M. Voss
- Cylindrical Mirror Analyzer (CMA)
- □ Good agreement, except for the 2.17 keV N_{2,3} CE and L3M4M5 Auger lines
- First ever quantitative comparison of CE and Auger yields from ⁹⁹Mo/^{99m}Tc

UncTools: Full MC uncertainty propagation implemented <u>output quantity</u>

- Symmetric: median(standard deviation)
- Asymmetric: median($+\sigma_{Upp,84\%} \sigma_{Low,16\%}$)
- Limit: direct/central value (shape of PDF examined; under testing)

NOTE: For symmetric or slightly asymmetric PDF, but median is always more accurate approach

□ NS_RadList: Atomic radiation spectrum from ENSFF decay data sets

- Calibration report, plot, new ENSDF records
- Use UncTools for uncertainty propagation
- Energy spectrum for dosimetry calculations

$\hfill\square$ Both codes will be available for beta testing

