

DE LA RECHERCHE À L'INDUSTRIE

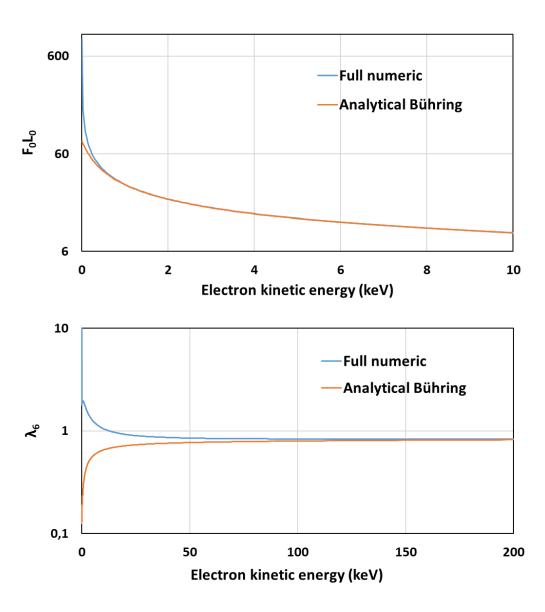
Latest developments in BetaShape

NSDD Spring Meeting – April 4-7, 2022 X. Mougeot

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

BetaShape v2.2 has been released in June 2021

- Treatment of beta transitions and electron captures with improved theoretical models.
- ✓ Allowed and forbidden unique transitions (no limitation).
- ✓ Provision of :
 - ✓ Beta and neutrino spectra for each transition, and total spectrum of the decay.
 - Capture probabilities, capture probability ratios and capture-to-beta-plus ratios, for each subshell and gathered by shell; splitting of the branch when competition between capture and beta plus processes.
 - ✓ Mean energies of continuum spectra, log-*f*, log-*t* and log-*ft* values.
 - ✓ Experimental beta shape factors (database included).
- ✓ Reads and updates of ENSDF files. Uncertainty propagation of input parameters. Report files.
- ✓ Various options such as: switching on/off the corrections; fixing energy step in continuum spectra; automatic update of Q-values from AME2020; creation of CSV files; coupling with the Saisinuc software for DDEP evaluations.
- Executables are available for various platforms: Windows 10, macOS Big Sur (Intel and M1), Scientific Linux 6.7, Ubuntu 20.04 and Centos 8.

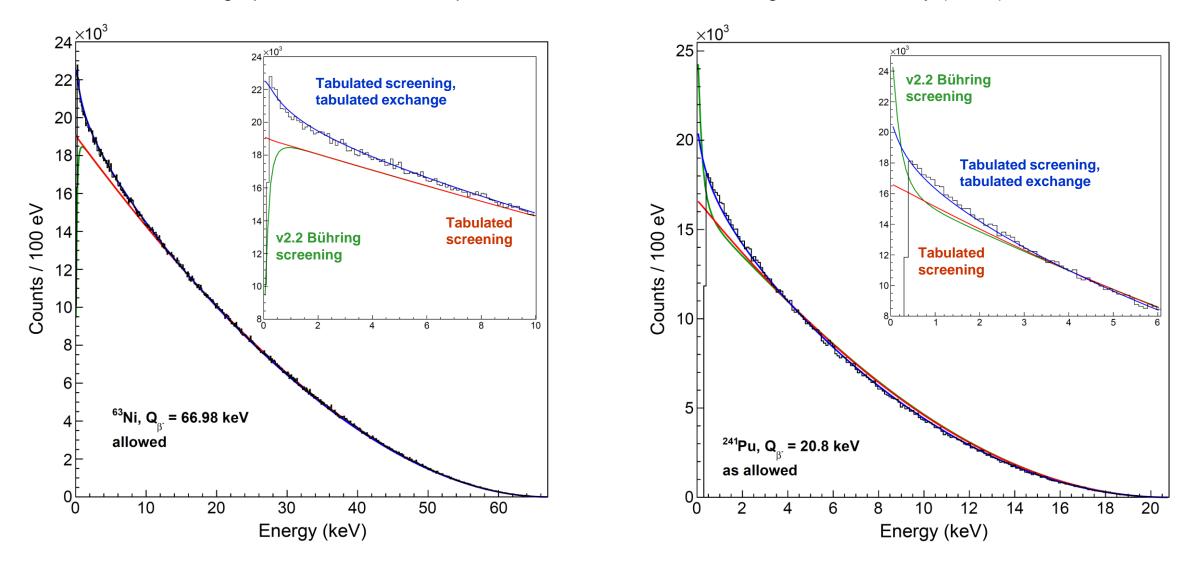

http://www.lnhb.fr/rd-activities/spectrum-processing-software/

<u>Problem</u>: Full numerical, precise calculations of relativistic electron wave functions including atomic screening is very time-consuming, especially at high kinetic energies where the effect is negligible.

- Theoretical work to establish a fast and precise computation of screening. Unfortunately, no method could be set.
- Hybrid method? Full numerical calculation at low energy, analytical when a given precision is reached.
- Comparison of analytical screening correction from Bühring (default one in current released version of BetaShape) with full numerical calculation.
- Example: Z = 28. Precision of 0.01 % reached by Bühring correction à 3.1 MeV for Fermi function F_0L_0 and at 13.4 MeV for λ_6 !
- Solution: extensive tabulation of parameters sensitive to screening up to 30 MeV, Z = 120 and 6th forbidden unique β[±] transitions (λ_7).
- → Interpolation in tables. Exponential energy grid for better accuracy at low energy. Covers more than the currently known transitions.

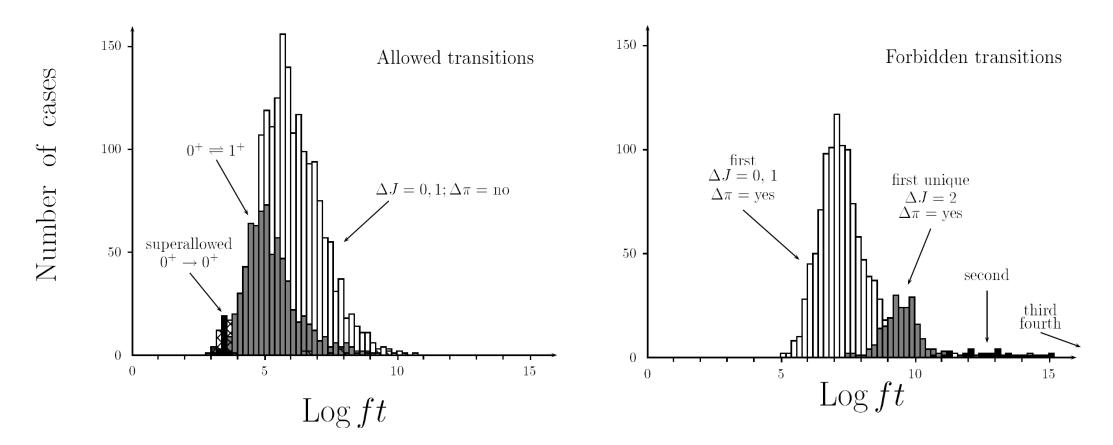
<u>Problems</u>: Atomic exchange effect can have a strong impact on the beta spectrum at very low energy. Full numerical, precise calculations is much more time-consuming than for screening (several minutes per spectrum). Model only available for allowed decays.

- ✓ Theoretical work: extension of the formalism to forbidden unique transitions.
- ✓ Our numerical code for the calculation of the exchange effect in allowed transitions has been adapted:
 - \rightarrow Treatment of the forbidden unique transitions.
 - → Use of the same atomic wave functions as for electron captures: identical for all isotopes of same atomic number.
- ✓ Extensive tabulation of the exchange correction factors:
 - \rightarrow All atomic orbital included, up to Z = 120.
 - \rightarrow Exponential energy grid for better accuracy at low energy.
 - \rightarrow Correction factors converge to unity: tabulation up to a precision < 0.001 %.



This correction may be not accurate enough in the case of ultra-low end-point energies. Further studies (experimental and theoretical) are needed.

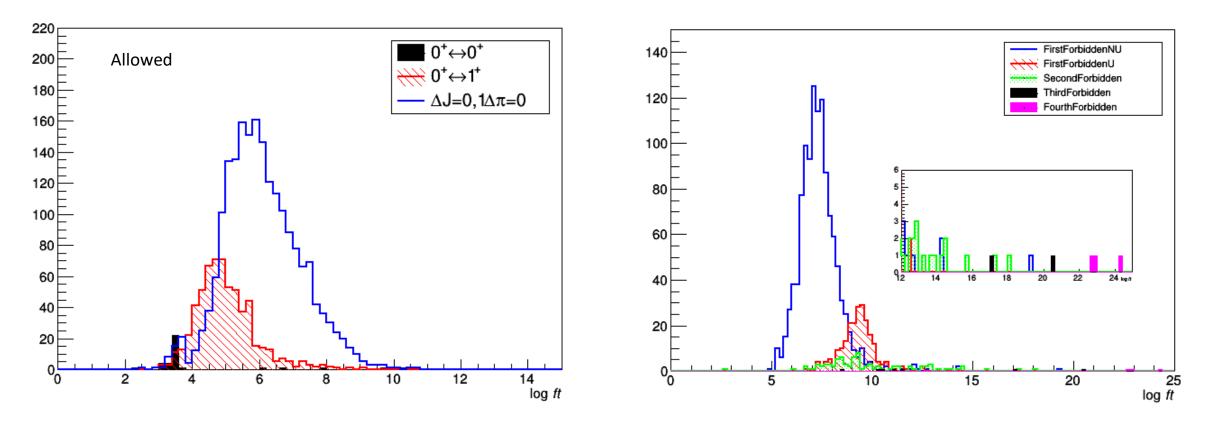
High-precision measured spectra available from metallic magnetic calorimetry (MMC).



- Inclusion of the atomic overlap correction in beta decays. Negligible influence except close to the end-point energy, which can appear lower by hundreds of eV.
- ✓ A few bugs have been fixed in output format in very specific cases.
- ✓ Negative Q-values are now possible: decay of isomeric state with stable ground state (^{87m}Sr).
- ✓ ¹²⁹I experimental shape factor has been updated.
- Some security checks have been added to deal with ENSDF files that are not following the format, making code crashing.
- Unknown uncertainties (AP, SY, GT, etc.) are treated as null. Implementation is ongoing to treat them correctly for intensities and log-*ft* values.

Latest review done in 1998 for a selection of well-known beta transitions and electron captures.

B. Singh *et al.*, *Review Of Logft Values In* β *Decay*, Nuclear Data Sheets 84, 487 (1998)



Updated review of log-ft values

Collaborative work: B. Singh (McMaster University), S. Turkat and K. Zuber (TU Dresden), X. Mougeot (CEA)

- ✓ Update of beta and electron capture decays present in ENSDF database (as of March 2022).
- ✓ Use of BetaShape to calculate the log-*ft* values (with the developments since v2.2).
- > Preliminary results (December 2021):

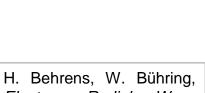
27

Forbidden non-unique transitions

Multipole expansion of hadron and lepton currents. Calculation of shape factors, half-lives, branching ratios, log *ft* values.

$$C(W_e) = \sum_{Kk_ek_v} \lambda_{k_e} \left[M_K^2(k_e, k_v) + m_K^2(k_e, k_v) - \frac{2\mu_{k_e}\gamma_{k_e}}{k_eW_e} M_K(k_e, k_v) m_K(k_e, k_v) \right]$$

Leading term for these transitions, simplifying the lepton current:

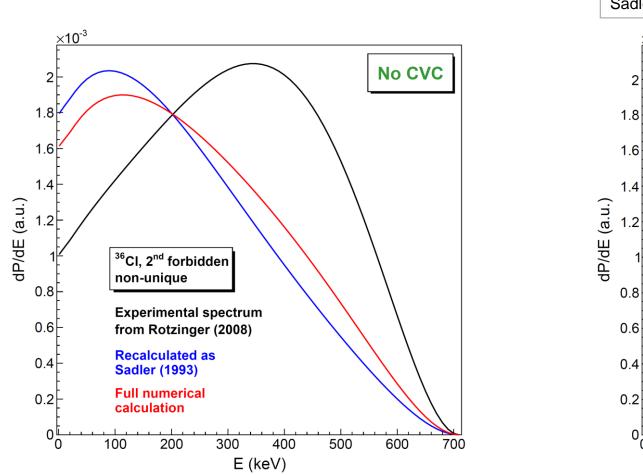

$$M_{n}(k_{e},k_{v}) = K_{n}(pR)^{k_{e}-1}(qR)^{k_{v}-1} \left\{ -\sqrt{\frac{2n+1}{n}} VF_{n,n-1,1}^{(0)} - \frac{\alpha Z}{2k_{e}+1} VF_{n,n,0}^{(0)}(k_{e},1,1,1) - \left[\frac{WR}{2k_{e}+1} + \frac{qR}{2k_{v}+1}\right] VF_{n,n,0}^{(0)} - \frac{\alpha Z}{2k_{e}+1} \sqrt{\frac{n+1}{n}} AF_{n,n,1}^{(0)}(k_{e},1,1,1) - \left[\frac{WR}{2k_{e}+1} - \frac{qR}{2k_{v}+1}\right] \sqrt{\frac{n+1}{n}} AF_{n,n,1}^{(0)} \right\}$$

Nuclear structure models are non-relativistic. I'm using NushellX@MSU, spherical shell model with fitted Hamiltonians.

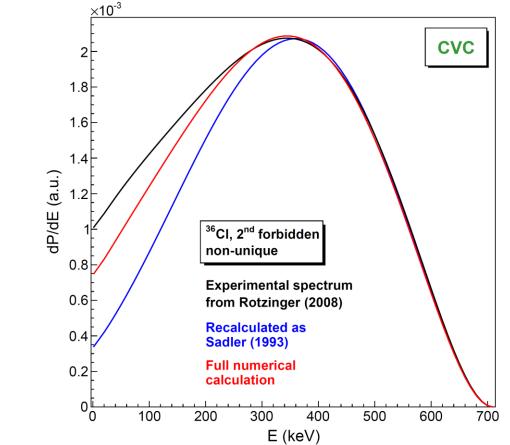
\rightarrow Conserved Vector Current (CVC) hypothesis

- Comes from gauge invariance of the weak interaction.
- Relationships between **non-relativistic** and **relativistic** vector matrix elements.

Relativistic matrix element: couples small and

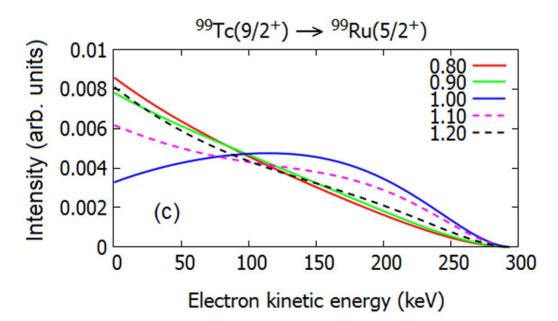


Electron Radial Wave functions and Nuclear Beta Decay, Oxford Science Publications (1982)

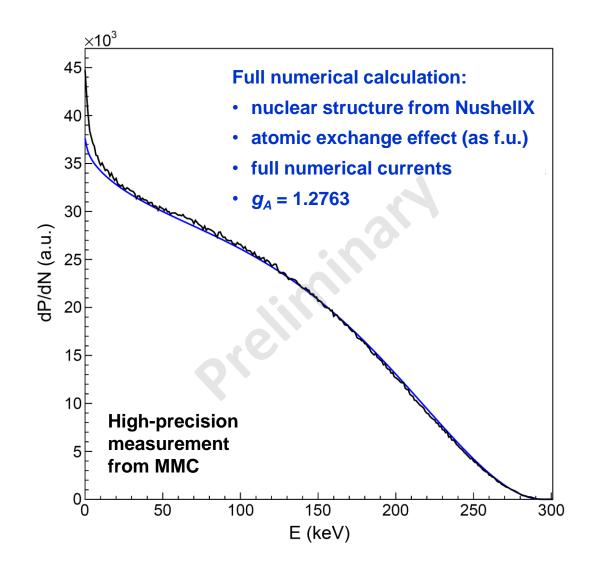

Precise measurement exists

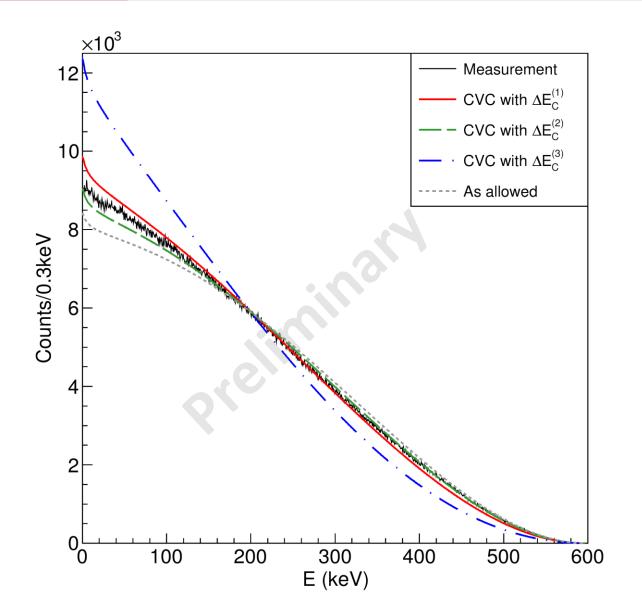
Rotzinger et al., J. Low Temp. Phys. 151, 1087 (2008)

Detailed theoretical study (with approximations) \rightarrow Matrix elements are correctly recalculated



→ CVC hypothesis mandatory + Influence of lepton current treatment




J. Kostensalo, J. Suhonen, PRC 96, 024317 (2017)

 g_A -driven shapes of electron spectra of forbidden beta decays in the nuclear shell model

- Shape sensitivity to g_A value well reproduced with partial lepton current.
- ✓ The only way to get the measured spectrum is to apply CVC with a full numerical treatment of the lepton current. Free-nucleon value of g_A seems to be (almost) sufficient.

First forbidden non-unique transition

- ✓ First high-precision Q-value
- First high-precision spectrum measurement (crystals)
- Calculations with nuclear structure
 - One-body transition densities with NushellX
 - Expansion of the lepton current
 - Screening and exchange included from tables
- → Realistic shape only possible with CVC, which is quite sensitive to the Coulomb displacement energy.

Adjustments lead to similar residuals but very different effective g_A coupling constant and log-*f* value.

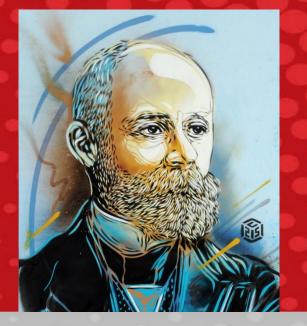
$\Delta E_C \ ({\rm MeV})$	g_A	$\log f$
20.527(53)	$g_A^{\rm free}$	-0.835(19)
$\Delta E_C^{(1)}$	1.057(5)	-0.975(14)
$\Delta E_C^{(2)}$	1.560(6)	-0.679(12)
$\Delta E_C^{(3)}$	0.834(4)	-1.148(14)

Nucleus deformation: hindered transition ($\Delta K = 7$) $t_{1/2}^{\exp} = t_{1/2}^{\text{theo}} / [F^{\Delta K-1}]^2 \rightarrow F = 0.0768(20)$

BetaShape

- ✓ Version 2.1 released in June 2019.
- ✓ Version 2.2 (current) released in June 2021.
- ✓ Executables available for various platforms: Windows, macOS, Scientific Linux, Ubuntu and Centos.

http://www.lnhb.fr/rd-activities/spectrum-processing-software/


\rightarrow Feedback on the results, comments, suggestions and bug reports are very welcome.

> Next version with improved model of beta decay with precise atomic effects (screening, exchange and overlap).

Updated review of log-ft values: completed, paper to draft.

Forbidden non-unique transitions

- ✓ Inclusion of nuclear structure in the calculations, from NushellX (usable by non-specialists).
- ✓ Study of the influence of the lepton current treatment, CVC hypothesis, Coulomb displacement energy and effective g_A .
- Ongoing developments in a European project: accurate atomic wave functions with a on-purpose DFT code; nuclear structure of deformed nuclei with (HFB + pnQRPA) large-scale calculations.

Thank you for your attention.

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr