

Status of AME & NuBase

F.G. Kondev Physics Division, Argonne National Laboratory on behalf of the **AME** (ANL-IJC-IMP-RIKEN) collaboration

kondev@anl.gov

Work supported by the Office of Nuclear Physics

Office of Science

NSDD Spring Meeting, April 4-8, 2022

AME2020 & NUBASE2020 - March 2021

coordinated by M. Wang (AME) and F.G. Kondev (NuBase)

The NUBASE2020 evaluation of nuclear physics properties**

F.G. Kondev ^{1,*}, M. Wang (王猛)^{2,3,*}, W.J. Huang (黄文嘉)^{2,4,5,6}, S. Naimi⁷, G. Audi (欧乔治)⁶

IOP science

since March 5, 2021 >18450 downloads

The Ame2020 atomic mass evaluation **

(I). Evaluation of input data, and adjustment procedures

W.J. Huang (黄文嘉)^{1,2,3,4} Meng Wang (王猛)^{1,5,*} F.G. Kondev⁶ G. Audi (欧乔治)³ S. Naimi⁷

The AME2020 atomic mass evaluation **

(II). Tables, graphs and references

Meng Wang (王猛)^{1,2,*} W.J. Huang(黄文嘉)^{1,3,4,5} F.G. Kondev⁶ G. Audi (欧乔治)⁵ S. Naimi⁷

Where to find the data

pdf & ascii: https://www.anl.gov/phy/atomic-mass-data-resources (ANL) https://www-nds.iaea.org/amdc/ (IAEA) http://amdc.impcas.ac.cn (IMP) **JAVA-AME** J. Chen stand-alone & www Table of Atomic Mass Evaluation JANIS Atomic Mass Table **+NUBASE** NUBASE1997-2020 References ● AME2020 ○ AME2016 ○ AME2012 Nuclide ? 177/u Get 🚺 rounded Nicolas Soppera FA NUBASE2020 International Atomic Energy Agency 177Lu71 (AME+NUBASE2020) --- rounded Nuclear Data Services 0(b-) = 496.8 + / - 0.8Marco Varpelli Q(ec) = -1397.5 + / - 1.2Provided by the Nuclear Data Section C EC, Betta C Beta-C Alpha C IT C SF C p C n C Stable C Winknown C No data **0(b+) = -2419.5 + / - 1.2 (see note) Sa Se Se 2Se 38 73 Se [₽]Se₃ ²Se Se 71 Se 3 S(n) = 7072.89 + / - 0.1635.5 s 6 =-54182.4 8+=188 41.1 m 0+ -61929.9(3 0+=100% S(p) = 6181.6 + / - 1.20(a) = 1447 + - 556 AS As As a AS 38 As a SAS 32 33AS BAS : S(2n) = 13360.86 + / - 0.222.5 ± 15/3 =-56587.2 8+=100% 6.2 m 5/2 --63118(3 8+=100% S(2p) = 14650 + / - 50Q(ep) = -10300 + / - 10032 Ge 38 Ge Ge Ge Ge₃ 2Ge Ge 2Ge Q(b-n) = -5878.8 + / - 0.92.25 h 0 6=61687.8(9+=100% 71.05 d 6 -66978.8(c=1805 0(2b) = -669 + / - 31 - Hydroger
2 - Helium
3 - Lithium
4 - Beryllium mass = 176943763.6 +/- 1.3 Ga Ga Ga Ga 51 Ga 38 Ga Ga Ga (micro-u) 4 - Beryilum 5 - Boron 6 - Carbon 7 - Nitrogen 8 - Oxygen 9 - Fluorine 10 - Neon 11 - Sodium with the second se B.E./A = 8053.450(check) +/- 0.007 1.2617 d 3/2 5-66879.2(1 M Excess = -52383.9 +/- 1.2 2**Zn** 32 54 Zn 34 SZn : 56 Zn 36 30 Zn 37 58 Zn 38 8Zn 3 SZn: 0(4b) = -6115 + / - 28Q(d,a) = 13022.5 + / - 1.212 - Magnesius 12 - Magnesun 13 - Aluminium 14 - Silicon 15 - Phosphoru 16 - Sulphur 0(p,a) = 9424.7 + / - 1.2Cu 3 ²Cu 63 29 CU 34 65 29 **Cu** 36 Cu a ⁷2Cu 38 Cu Q(n,a) = 7130 + / - 4017 - Chlorine 18 - Argon 19 - Potassium 20 - Calcium Energy = 0.0JPI = 7/2+* 60 28 **Ni** 32 28 Ni 33 62 28 Ni 34 53 Ni 34 28 Ni 36 66 Ni 38 8N1 39 T1/2 = 6.6443 d 0.0009 DecavMode = B-=100 Q(b-)=1397.5 +/- 1.2 27 CO 32 ⁶⁰27**CO** 33 61 27 CO : 2**CO** 39 3**CO** 36 Co 5 CO 38 56 CO 39 **Incorporated into LiveChart** prev=177Yb 0(ec)=-3420# +/- 200# 1.649 h 7/3 h=-62898.218 β=100% next=177Hf Q(b-)=-1166 +/- 3 & standalone app 0(ec)=-496.8 +/- 0.8 58 Fe 32 8Fe 33 60 Fe 34 51 Fe 34 Fe a 63 Fe 3 6 Fe 38 55 Fe **:here 0(b+)=0(ec)-2*510.999 keV Q(b+)=Q(ec) defined in AME and ENSDF

AME2020 vs AME2016

- 777 new experimental data
 - 477 mass spectrometry
 - 300 decay energies
- masses for 74 nuclei measured for the first time
- significant impact at the neutron- and proton-rich sides
- impact in the region of heavy nuclei

- improved mass uncertainties for 857 nuclides
- worsen mass uncertainty for **313** nuclei mostly derived from TMS (extrapolation), but some are for measured masses – *e.g.* ¹⁶⁷Lu (30 vs 37 keV)

The NUBASE2020 evaluation of nuclear physics properties**

F.G. Kondev^{1,*}, M. Wang (王猛)^{2,3,*}, W.J. Huang (黄文嘉)^{2,4,5,6}, S. Naimi⁷, G. Audi (欧乔治)⁶

complete, up-to-date & reliable information about the basic NP properties

What is included in NuBase?

- masses & Ex for isomers (T_{1/2}>100 ns) and their method of deduction
- T_{1/2}, Jπ, decay modes and BR for both ground states (3558) and isomers (1983)
- properties of 205 Isobar Analog States (IAS)

¹⁶² Eu -	-58722.9	1.3				~ 10	8	1+#	07 17Wu04	Т	1987	$\beta^{-}=100$	
¹⁶² Eu ^m -	-58565.0	1.3	158.0	1.7	MD	15.0	s 0.5	(6+)	07 18Ha19	TJ	2016	$\beta^{-}=100$	
¹⁶² Gd -	-64281	4				8.4	m 0.2	0+	07		1967	$\beta^{-}=100$	
¹⁶² Tb -	-65879.5	2.0				7.60	m 0.15	(1-)	16		1965	$\beta^{-}=100$	
¹⁶² Tb ^m -	-65594.0	2.5	286	3		10#	m	4-#	20Or03	EJ	2020	β- ?; IT ?	
¹⁶² Dy -	-68181.2	0.7				STABLE		0+	07		1934	IS=25.475 36	
¹⁶² Dy ^m -	-65993.1	0.8	2188.1	0.3		8.3	µs 0.3	8+	11Sw02	ETD	2011	IT=100	
¹⁶² Ho -	-66041	3				15.0	m 1.0	1+*	07		1957	$\beta^{+}=100$	
¹⁶² Ho ^m -	-65935	3	105.87	0.06		67.0	m 0.7	6-*	07		1961	IT=62; β^+ =38	
¹⁶² Er -	-66334.2	0.8				STABLE	>140Ty	0+	07 56Po16	Т	1938	IS=0.139 5; α ?;2 β^+ ?	*
¹⁶² Er ^m -	-64308.2	0.8	2026.01	0.13		88	ns 16	7(-)	07 12Sw01	TJ	1974	IT=100	
¹⁶² Tm -	-61477	26				21.70	m 0.19	1-*	07		1963	$\beta^{+}=100$	
162Tm^{m} -	-61350	50	130	40		24.3	s 1.7	5+	07 74De47	EDJ	1974	IT=81 4; β^+ =19 4	*
¹⁶² Yb -	-59821	15				18.87	m 0.19	0+	07		1963	$\beta^{+}=100$	
¹⁶² Lu -	-52830	80			*	1.37	m 0.02	1-*	07		1978	$\beta^{+}=100$	
¹⁶² Lu ^m -	-52710#	220#	120#	200#	*	1.5	m	4-#	07		1980	$\beta^+ \approx 100; \text{IT}$?	
¹⁶² Lu ⁿ -	-52530#	220#	300#	200#	EU	1.9	m	9-#	07		1980	β+ ?;IT ?	*
¹⁶² Hf -	-49168	9				39.4	s 0.9	0+	07		1982	$\beta^+=99.9921; \alpha=0.0081$	
¹⁶² Ta -	-39780	60			*	3.57	s 0.12	3-#	16		1985	$\beta^+=99.926\ 10; \alpha=0.074\ 10$	
¹⁶² Ta ^m -	-39660#	80#	120#	50#	*	5#	8	7+#				β ⁺ ?;IT ?;α ?	
¹⁶² W -	-33999	18				1.19	s 0.12	0+	16		1973	β^+ ?; α =45.2 16	
¹⁶² Re -	-22450#	200#				107	ms 13	(2)-	07		1979	$\alpha = 94.6; \beta^+?$	
$^{162}\text{Re}^{m}$ -	-22280#	200#	175	9	AD	77	ms 9	(9)+	07		1979	$\alpha = 915; \beta^+?$	
162Os -	-14500#	300#				2.1	ms 0.1	0+	07		1989	<i>α</i> =100	
$*^{162}Sm^{m}$	¹⁶² Sm ^{<i>m</i>} T: other 17Pa25=1.7(0.2)												
* ¹⁶² Eu	² Eu T: 17Wu04=11.8(1.4) 87Gr12=10.6(1.0) but values include both gs and isomer												**
* ¹⁶² Eu	Eu J: from 18Ha19; conf p5/2[413]n7/2[633],K=1+												**
* ¹⁶² Er	52 Er T: the lower limit is for α decay												
$*^{162}$ Tm ^m	e^{162} Tm ^m E : from 66.90+x keV; x<125 keV from 74De47												**
* ¹⁶² Lu ⁿ	x ¹⁶² Lu ^a I: existence is tentative and needs confirmation												**

integral part of AME

- need to assign a mass measurement result to a specific nuclear state (ground or isomer)
- cases where the experimental $\Delta m/m$ is insufficient to resolve ground state from isomers
- cases where excitation energy of the isomer is used to determine the ground state mass

NUBASE2020 - Isomers

NUBASE2020 - Directly measured spins

NuBase: Jπ=1/2-*

- directly measured spins a wealth of new information using "in-source" (*e.g.* RILS at ISOLDE and TRILIS at TRIUMF) and "collinear" (*e.g.* CRIS at ISOLDE) laser spectroscopy
- parity from other spectroscopic data

Conclusions & Outlook

 the new AME2020 & NuBase2020 evaluations – complete, up-to-date & reliable information about the basic NP properties

https://www-nds.iaea.org/amdc/ (IAEA) http://amdc.impcas.ac.cn (IMP) https://www.anl.gov/phy/atomic-mass-data-resources (ANL)

 if you spot a typo or error or if something is not clear please let us know: <u>kondev@anl.gov</u> (F.G. Kondev) and/or <u>wangm@impcas.ac.cn</u> (M. Wang)

future additions & improvements

- extension to other NP properties nuclear structure, astrophysics & applications
- improving treatment of data correlations & extrapolations important in the era of FRIB (astrophysics) and in studies of heavy and super-heavy nuclei

AME2024 & NUBASE2024