8th IAEA DEMO Workshop

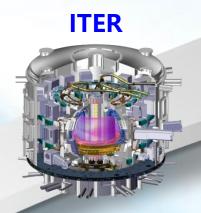
CN Facilities Anticipated for DEMO Preparation

Xuru DUAN On behalf of Chinese Tritium breeding Blanket team

Southwestern Institute of Physics, Chengdu, China

Contributions from SWIP, ASIPP, CAEP, CIAE, INEST, UCAS, etc.

Outline


China MCF & TBB Development Strategy

- Facility development and plan to support next-step device and DEMO blanket
 - Breeder, multiplier and structural material
 - Blanket fabrication
 - Cooling technology
 - Blanket test (high heat flux)
 - Fuel cycle
 - Remote handling

China MCF Development

China Magnetic Confinement Fusion Development

CFETR

Fusion technology engineering validation
Demonstration of fusion technology

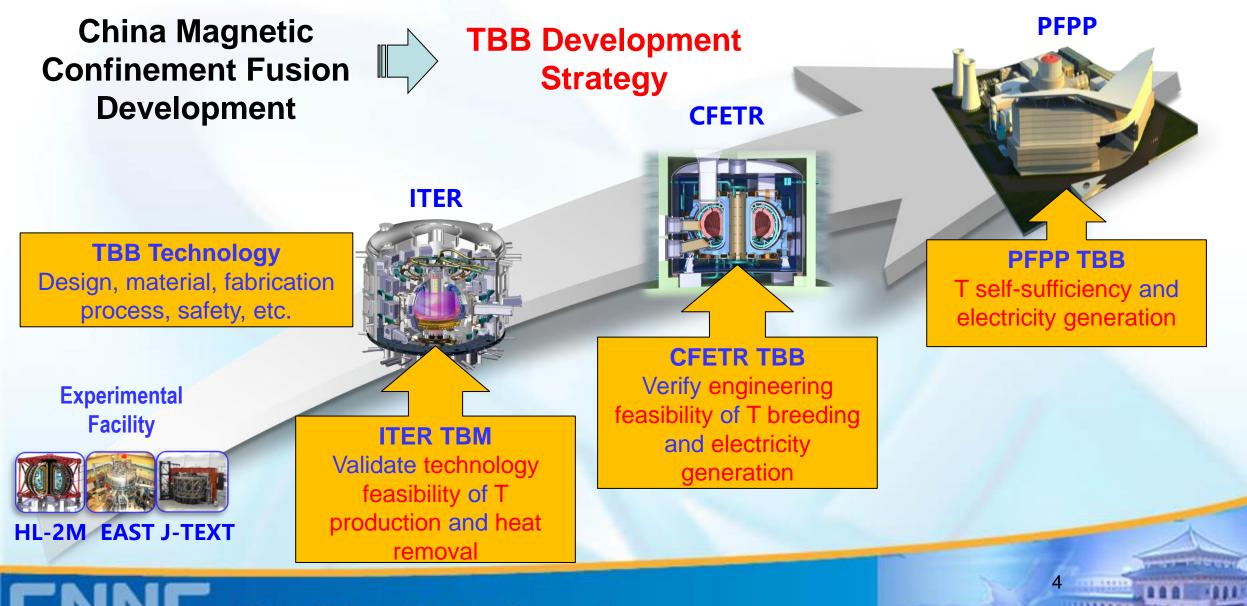
electricity generation into grid
Safety, reliable, efficient

PFPP

Experimental Facility

Steady state advanced operation
 Advanced divertor, high power H&CD, diagnostics

Steady state burning plasma

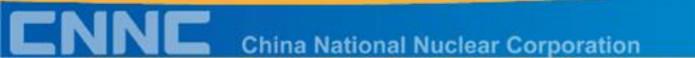

Hybrid burning plasma

China National Nuclear Corporation

3

China MCF Development

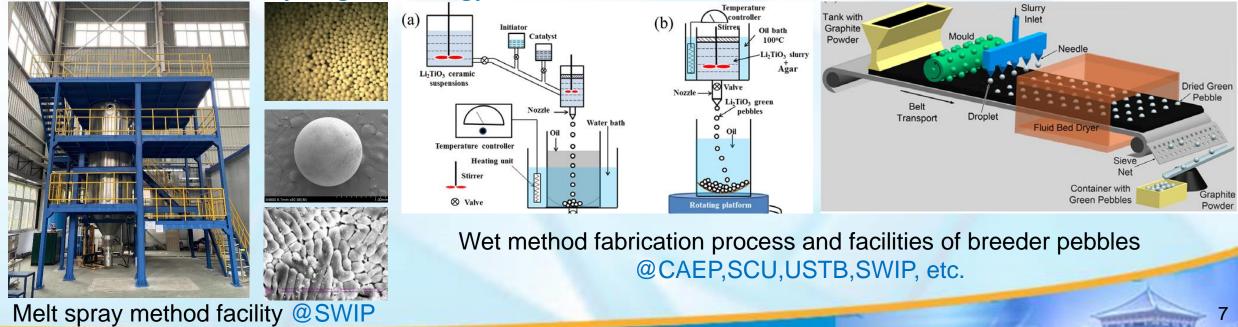
TBB Concepts and Application



• HCCB TBB Concept (Helium Cooled Ceramic Breeder)

- ITER TBM
- CFETR HCCB TBB
- WCCB TBB Concept (Water Cooled Ceramic Breeder)
 CFETR WCCB TBB
- HCLL TBB Concept (Helium Cooled Lithium Lead)
 SCLL TBB Concept (Supercritical CO₂ cooled Lithium Lead)
 Advanced concept for future

Facility development and plan to support next-step device and DEMO blanket



Tritium Breeder Technology

• Mostly focus on lithium ceramic breeder

- Melt spray method tritium breeder manufacturing equipment, small-scale: 200 kg/year.
- Other wet processes facility: laboratory-scale.
- Many universities and institutes are developing new advanced tritium breeder materials.
- Plan:
 - Low-cost large-scale fabrication facility (ton level);
 - Lithium-6 recycling technology and advanced tritium breeder.

Neutron Multiplier Technology

China National Nuclear Corporation

Topography of beryllium @SWIP

- Focus on Be-based neutron multiplier (@SWIP & Haibao)
 - Rotating electrode method beryllium pellet manufacturing equipment achieves small batch production: 10 kg/batch.
 - Advanced multiplier beryllide is under studied by universities and institutes.
 - Plan:
 - Low-cost large-scale fabrication facility of beryllium and beryllide pebbles (ton level);
 - Develop materials and solutions to recycle or replace beryllium.

Fabrication facility of Be pebbles based on rotating electrode method @SWIP & HaiBao

Beryllium pebbles fabricated by 10kg / batch process

Pebble Bed Technology

- A series of pebble bed experiment facility has been constructed (@SWIP)
 - Covering thermophysical, thermal mechanical, multiphysics coupling, pressure drop, etc.
 - Plan:
 - comprehensive performance of pebble bed in a multi-field environment;
 - T production and comprehensive performance under neutron irradiation.

Multiphysics coupling pebble bed performance test platform

Pebble bed gas pressure drop Thermal mechanical with compress load Thermophysical property testing facility


9

Structural Material

• RAFM steel and advanced structural materials

- The industrial fabrication process has been established for RAFM steel (CLF-1 and CLAM). The material database has been established, including welding database.
- Advanced materials (ODS, TMT, CNA, vanadium alloy) development at laboratory scale.

Irradiation of Material

• Focus on irradiation experiment and its PIE

 Fission reactors have been used for irradiation experiment of functional materials and structural materials.

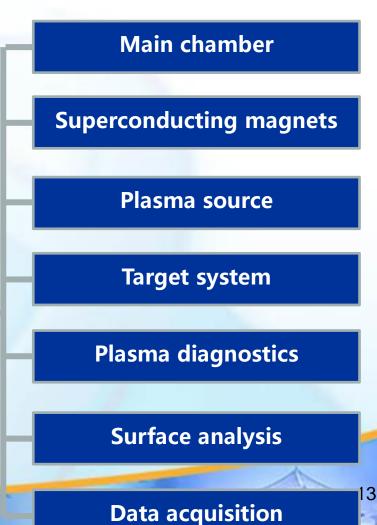
Irradiation of Material

- Focus on irradiation experiment and its PIE
 - Several accelerator driven D-T neutron sources have been used for both functional and structural material study.

D-T neutron sources (~10¹¹s⁻¹) (@CAEP) D-T neutron sources (~10¹²s⁻¹) (@INEST)

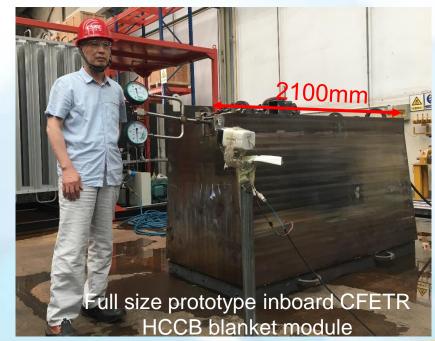
PWI

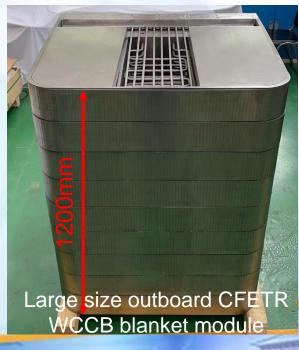
Material PWI Research Platform(@SWIP&ASIPP)


- Deliver reactor-relevant particle flux to materials
- Capability of in-situ analysis on material surfaces

LEAD (@SWIP)

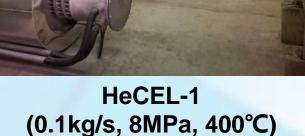
Shot length	>1000 s
Particle flux	>1x10 ²⁴ m ⁻² s ⁻¹
Magnetic field	>3 T




Blanket Fabrication

- Blanket fabrication technology has been developed with industries supported by China TBM program and domestic project.
 - Semi-prototype HCCB TBM module (@SWIP)
 - Full size prototype inboard HCCB blanket module for CFETR (@SWIP)
 - Large size outboard WCCB blanket module for CFETR (@ASIPP)

Helium cooling (@SWIP)


- Helium cooling experiment loop HeCEL-1 was constructed for the thermohydraulic testing of component for blanket.
- HeCEL-1 was connected with 60kW high heat flux facility and ITER Mini-CODAC.

Control system & ITER Mini-CODAC

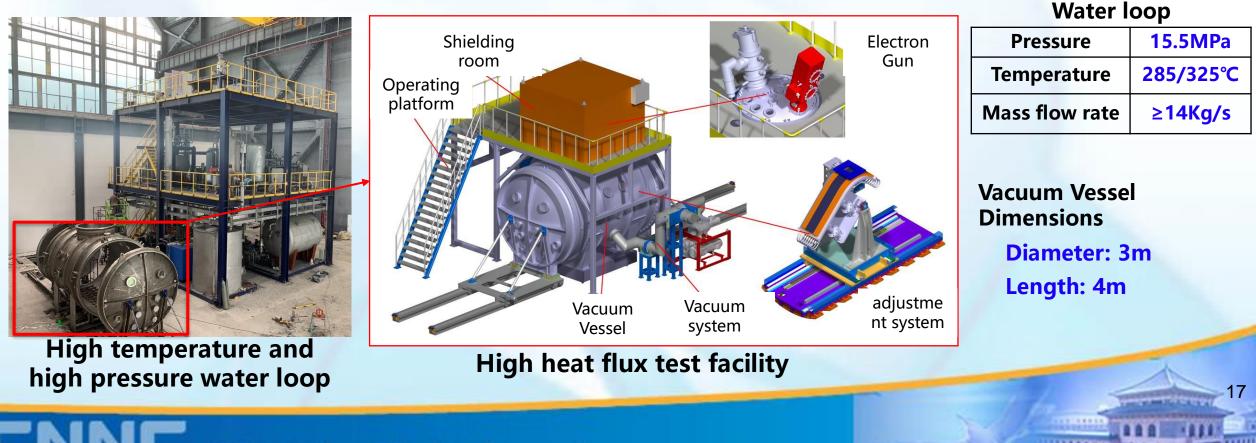
Hydraulic testing

High heat flux testing

15

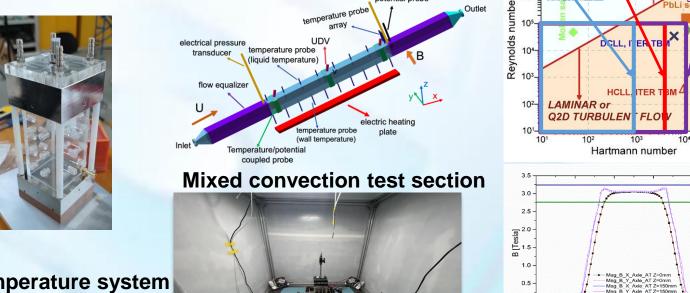
16

Helium cooling (@SWIP)


- New helium cooling experiment loop HeCEL-3 was constructed for the thermohydraulic testing of prototype blanket of CFETR and accident experiments.
- HeCEL-3 is planned to connect with 400/800kW high heat flux facility.

• Thermal Hydraulic Test Platform for WCCB BLK (@ASIPP)

- High heat load test (WCCB blanket prototype, divertor target)
- Capability of WCCB blanket thermal fluid experiment


TURBULENT FLOW

API FNIFS

-2.0 -1.5 -1.0

Liquid metal (@UCAS)

- MaTH (Magneto-Thermo-Hydrodynamic) loop
 - Flow and heat transfer, Magneto-convective fluctuations
 - MHD pressure drop, Couple MHD effect of multi-channel Immersed potential protein protein and protein

MaTH Loop Superconducting magnet

- Strength: 3 T (Maximum)
- Field area: 300X320X1000mm³

Constant temperature system and convection cavity

China National Nuclear Corporation

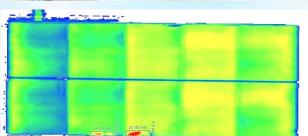
18

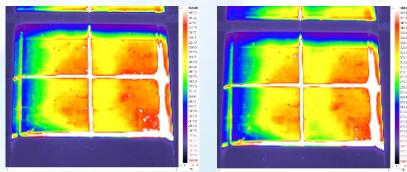
0.0 0.5 1.0

Distance Im

+8%

Blanket Test


• Mostly based on cooling loop for thermohydraulic testing


- Also connect with high heat flux testing facility (@SWIP)
- The multiphysics coupling testing platform is under consideration.
 - to cover thermal load, pressure, high heat flux, mechanical load (EM load)

EMS-400 High Heat Flux Testing facility (@SWIP)

W armor / RAFM(CLF-1) FW sample and its high heat flux testing

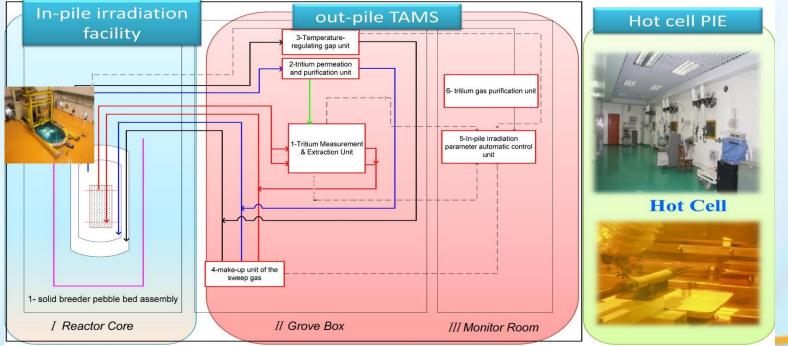
>1000 cycles for 1MW/m²

Fuel cycle

20

In-pile experimental loop (@CAEP)

- A new in-pile experimental loop has been established in CMRR reactor for ceramic tritium breeder irradiation with capability of online reloading of irradiated samples.
- The irradiation temperature: 300 ~ 750 °C (±10 °C).
- A series of irradiation experiments have been carried out for Li4SiO4(7.5 % 6Li), Li4SiO4 (93 % 6Li) and Li2TiO3 (7.5 % 6Li) pellets.
- The facility realizes the dual function verification of tritium extraction from carrier gas and coolant in 2022.


Fuel cycle

21

In-pile experimental loop (@CIAE)

- Another in-pile irradiation of lithium ceramic and tritium extraction experiment loop was constructed in CARR reactor in CIAE.
- A series of irradiation experiments have been carried out for different lithium ceramic pellets from different universities and institutes.

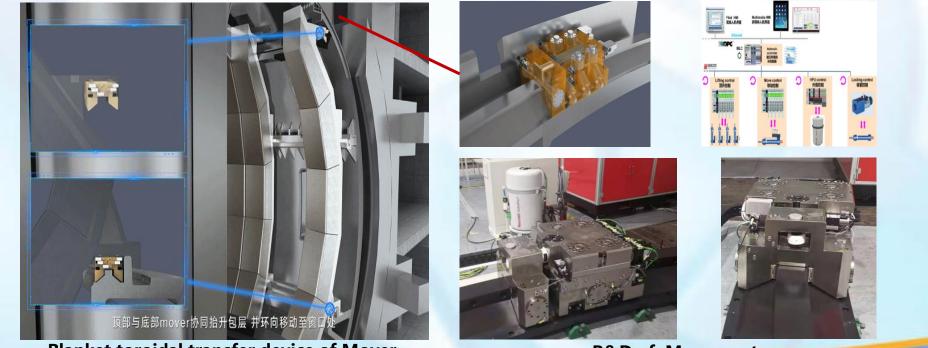
In-pile irradiation of lithium ceramic and tritium extraction experiment in CIAE

Fuel cycle

• Outer fuel cycle system of tritium plant (@CAEP)

China National Nuclear Corporation

 1:1 scale tritium plant outer fuel cycle system for the 200MW CFETR has been established.


Remote handling

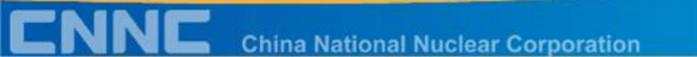
23

Blanket toroidal transfer system (@ASIPP)

- Aiming at large load, high control accuracy and narrow operating space, the engineering design of the mover system was completed.
- Pre-research of highly integrated hydraulic system with functions of lifting, circular movement and posture adjustment of the blanket has been manufactured and functionally tested.

Blanket toroidal transfer device of Mover

R&D of Mover system


Summary

- The technology development of tritium breeding blanket is one important part of China fusion development toward DEMO.
- Under support by domestic project and China TBM project organized by MOST, a lot of design and R&D activities have been implemented, also many testing facilities and platforms are constructed to support and verify the design, which will provide indispensable experience.
- Still a lot of challenges are on the way, the international collaborations offer effective way to bring our effort together to tackle these difficulties.

Thank you very much for your attention!

