Summary/discussion

8th IAEA DEMO WS Topic 1:

Transient operational phases and transient loading environments for fusion DEMO power plants

N. Aiba (QST), F. Maviglia (EUROFusion), W. Biel (Forschungszentrum Jülich)

Plasma transient challenges and resulting requirements for the machine design of a DEMO tokamak reactor by F. Maviglia

- Difference in heat load requirements between ITER and DEMO: irradiation resistant FW materials have lower thermal conductivity, tritium breeding requirement (thin FW), and energy conversion efficiency (high coolant temperature).
- <u>Transient (heat) loads on FW will be come from normal (ramp-up/down), and off normal events (up/down-VDE, loss of confinement, mitigated/unmitigated disruptions).</u>
- All of them except mitigated disruption will be resolved with limiters in EU-DEMO.
- In-vessel coils (IVCs) will be necessary to robustly control vertical stability/displacements in plasmas with large elongation.
- Fast radial control (with IVCs) will help to make operation much safer.
- (Heat) loads by disruption must be reduced with mitigation technique relaxing toroidal/poloidal peaking of heat loads.
- 3D heat flux (HF)on limiters and first wall is evaluated, and thermal calculations of PFC designs are also carried out.
- Vapor shielding modeling results foresee a factor heat flux 10 reduction for major disruption.
- Limiter design of EU-DEMO are updated with the latest considered perturbations.
- Transient heat load on divertor will be come from 1) reattachment and 2) ELMs. (ramp-up will be shown in discussion session)
- Detached plasma conditions on divertor plate is necessary to protect the divertor. Since ramp-down rate in DEMO must be slow (density limit, density required for detatchment are also key, safe way for ramp-down, SCRAM?), attached condition will be kept for a long time enough to burn-out the divertor (don't know how long,).
- Strike point (on divertor plate) sweeping is a candidate mitigating loss of detatchment. This technique will require IVC, but the integration is challenging. In addition, a technique for diagnostics is also necessary.
- <u>Naturally ELM-free regime will be on priority for EU-DEMO, because one ELM can melt the divertor and a few</u> tens of ELMs can erode one-half of W width.

Development of the Fenix flight simulator for DEMO transient scenarios by E. Fable

- Fenix is a simulator for checking pulse schedule, developing/improving plasma control schemes for operation scenario/against transients etc..
- Many transients/perturbations in ramp-up/flat-top/ramp-down phases are listed.
- <u>Transients/perturbations mainly discussed in this talk are 1) failure of aux. heating, 2) tungsten (W)</u> drop into plasma, 3) unexpected H-L transition in EU DEMO. Simulation results investigating their impacts are presented.
- Impact of W drop into plasma should be relaxed with (localized) ECW heating (near edge) to avoid radiation collapse.
- Role of impurity for divertor protection during ramp-up is critical at L-H transition.
- Exit from burn (flat-top) phase and interplay with impurities is also critical during ramp-down.
- <u>Ramp-down rate is restricted to keep plasma equilibrium under control, Hence, fast shutdown is not easy.</u>
- <u>Reactor SCRAM scenario design is necessary.</u>
- Small perturbations to plasma can have large impact on operation; ex. failures of fueling/heating.
- <u>Application to transient scenarios are becoming increasingly complex and realistic, towards the full</u> <u>definition of a self-consistent DEMO scenario.</u>
- To evaluate torelence to transients with Fenix, further physics models should be included (in ASTRA).
- Power exhaust during ramp-up/down will be one of main topics.

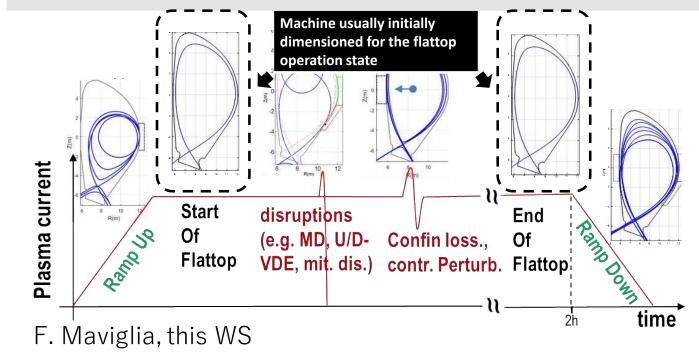
Strategies for gradual increase of flat-top plasma performance towards the operational point according to the ITER operational plan by W. Treutterer

- Summarizing ITER goals/research plan, including milestones in each phase (FP/PFPO/FPO).
- In ITER, disruption mitigation system (DMS) will be demonstrated in PFPO-1 to avoid/dissipate run away electron. Also, disruption avoidance strategies will be validated.
- ELM control (with RMP/kicks/pellet pacing) will be demonstrated in PFPO-2.
- In FPO, plasma will be operated stable to MHD, but if it became unstable, DMS will play a key role to reduce heat load to PFC.
- Quantitative prediction of all the effects from energetic (alpha) ions is difficult, because ITER FPO is the first case that plasma heating will be maintained by itself (burning).
- <u>Areas of concern from the viewpoint of thermal loads in ITER (up to $q_{\perp} \sim 4.5 MW/m^2$) are 1) limiter for ramp-up/down, 2) secondary (upper) X-point region, 3) divertor region (during ramp-down).</u>
- Burn control with fueling is important to access to high Q conditions.
- Exit from high Q conditions is more difficult, because to avoid fast H-L transition is needed. Adjustment of aux heating and impurity seeding are important in this control.
- IMAS was created to develop 1) integrated scenario, 2) experimental analysis workflow. This has been
 applied to develop (PFPO/FPO) scenarios. Physics-based simulation will be able to perform in IMAS
 framework.

Solutions for the transients and heat load variations of the CFETR operation scenarios by G. Zhuang

- Transients discussed in this talk are 1) ELMs, 2) VDEs/disruption.
- Also, relaxing steady-state heat exhaust (to divertor) is discussed.
- Coupled core-pedestal modeling is applied to simulate flattop phase with self-consistent H&CD.
- Baseline hybrid/steady-state scenarios will have grassy ELM whose energy loss is <0.4% of pedestal stored energy. Ideal MHD is robustly stable in both scenarios, so, disruptions by this reason will be avoided.
- <u>Grassy ELM has many advantages; 1</u>) <u>small ELM energy loss, 2</u>) <u>impurity cleaning, 3</u>) <u>high plasma</u> <u>performance.</u> (cracking (of divertor plate) limit is much less than melting one, CFETR team is trying to fix it. EU-side has tried to strength divertor material.)
- Large grassy ELM frequency is necessary to avoid tungsten erosion.
- Long-leg divertor with Ar seeding can help to satisfy physics requirements easily (partial detachment). The lifetime requirements will be also satisfied.
- In-vessel coils (IVCs) and disruption mitigation system are necessary to avoid VDE/disruption control.
- Dependence of VDE growth rate on IVCs locations is investigated. IVCs closer to plasma has advantage.
- Comparison of disruption impacts between ITER and CFETR is performed.

Current status of helical fusion reactor design and study on operation control scenario by T. Goto


- Helical reactor has large advantage due to no plasma current. => no disruptive event.
- Transients discussed in this talk are 1) density limit, 2) beta limit.
- Sudo(-like) density limit scaling may determine 'edge' density limit.
- Core/edge MHD can restrict operation regime (not cause major collapse) in helical reactors.
 => MHD can be avoided by choosing operation regime, but in some case, the regime has poor confinement.
- Density limit (due to radiation collapse) can be increased with large heating power.
- Beta limit can be increased by controlling vertical field/rotational transform and optimizing coil configuration. => to realize both good stability and good confinement.
- <u>Density limit control can be achieved with feedback control of pellet fueling/aux. heating power</u>.
 => Feble-san's will present the reliability of pellet inject is ~90%, which may have impact on controllability.
- Data-driven approach used for controlling heating power is helpful to avoid collapse in LHD.
- Detachment condition for divertor plasma is necessary in helical/stellarator DEMO, as in tokamak DEMO.
- Achievable fusion gain of LHD-type DEMO will be limited to Q~10, and the size of DEMO should be large.
 => Experimental data in LHD predict this limit for Q. Optimization of coil shape will help to improve it. Confinement performance in LHD is different from that in W7-X; LHD has much larger neoclassical heat flux but smaller turbulent heat flux than W7-X. No stellarator reactor design use improved confinement mode (H-mode). Turbulent transport is sometimes dominant even in stellarator.
- New concept "FFHR-b3" with twice the size of LHD is designed by optimizing coil shape/current design.

Pieces of material for discussion (1)

We focus on two kinds of transients

- 1) transient operation phases
- 2) transient loading environments.
- Transient operation phases
 - Tokamak
 - Ramp-up, L-H transition, Burn control, Ramp-down, H-L transition
 - Helical/stellarator

Transient list: Normal v.s. Off-Normal events

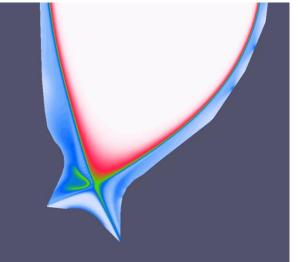
Nothing? (long time for start up)/sensitivity of plasma performance on coil design

✓ Consider good operation path and/or reactor design.

✓ In particular, safe and robust ramp-down scenario in tokamaks is necessary but challenging….

Pieces of material for discussion (2)

- Transient loading environments
 - Tokamak


Disruption/VDE/RE, ELMs, reattachment (divertor), loss of aux. heating, W flake, unexpected H-L transition

• Helical/stellarator

Radiation collapse (density limit), minor collapse (beta limit), divertor detachment.

✓ Radiation collapse/minor collapse/detachment is the same issue in tokamak and helical/stellarator.

JOREK simulation by G. Huysmans (W. Treutterer, this WS)

- ✓ Not only regular procedures avoiding them but also SCRAM scenario should be considered.
 …. Knowledge/experience in ITER will be useful (DMS, detachment, etc.).
- ✓ Skin effect of plasma is large because of low resistivity. Treatment of radiation loss rate during ramp-down (become 100% easily) is difficult.=> Ramp-down rate is restricted.
- Strategy for avoiding ELM is one of the key topic to realize steady-state operation. CFETR team chooses grassy ELM, but other DEMO concepts in the world (EU, JA etc.) may not determine it…. Main reasons are as follows.

◆ Reliability of ELM-free operations/ELM control methods in DEMO.

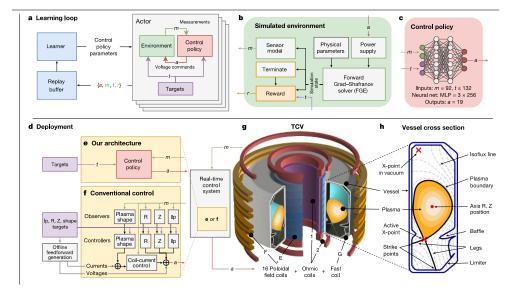
◆Requirement from divertor material (thresholds for melting, cracking (etc.)).

Pieces of material for discussion (3)

Tools useful to consider strategies shown above.

- Physics-based simulation code (ex., CREATE, MECS, etc.)
- IMAS (ITER), flight simulator (Fenix, etc.?), integrated codes in the world etc.

Develop reliable and simple physics models for flight simulators, integrated codes. Missing models realizing the following issues; these are proposed by E. Fable.


- Correct estimation of line radiation in pedestal-near SOL region.
- Correct prediction of plasma profiles (particularly around separatrix).
- Correct prediction of stability of MHD modes leading to TQ
- Correct detachment model at divertor
- Correct density limit model

Can we develop the models satisfying these requirements?

... Maybe, it is very very difficult to satisfy all of them, because physics are still unclear even when using physics-based (first principle-like) simulation codes. Is it possible to utilize flight simulators/integrated codes for DEMO design even if we accept reality?

=> Can machine-learning-based models/techniques be a game changer?

J. Degrave, Nature 2022

