EUROfusion OVERVIEW OF THE R&D OF MATERIALS INTENDED FOR DEMO AND DONES AT LITHUANIAN ENERGY

Gediminas Stankunas, Andrius Tidikas, <u>Simona Breidokaite</u> LEI

100	

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement number 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Outline

• Eu DEMO

- Model Analysis
- Irradiation Scenario
- Materials
- Example of results

• DEMO Oriented Neutron Source (DONES)

- Model
- Methodology, computational model and source
- Results examples

EU DEMO: Model

For Vacuum vessel calculations was used 2015 DEMO baseline model

Activation analysis were performed with 2 kinds blanket configurations:

- HCPB()
- WCLL ()

Figure 1 MCNP model of DEMO VV

Using MCNP6 with JEFF 3.2 nuclear data library was calculated neutron flux

Nuclide inventory calculations were performed with Fispact-II code and TENDL-2017 nuclear data library

Figure 2 EU DEMO MCNP model with HCPB (left) and WCLL (right) blanket concept

Model

For Divertor calculations was used 11.25 degree toroidal sector from the full DEMO1 2017 model

Activation analysis were performed with 2 kinds blanket configurations:

HCPB (provided by Sara,

HCPBlayer-DIV19_MCNPmodel_ENEA_18112020.txt)

WCLL (provided by Sara

WCLLlayer-DIV19_MCNPmodel_ENEA_25052020.txt)

Using MCNP6 with JEFF 3.2 nuclear data library was calculated neutron flux for 1835 divertor cells

Nuclide inventory calculations were performed with Fispact-II code and TENDL-2017 nuclear data library

Figure 4 EU DEMO MCNP model with HCPB (left) and WCLL (right) blanket concept

Irradiation Scenario

\Rightarrow 1st DEMO operation phase:

- ⇒ Continuous operation over 5.2 years (CY) with 10 days at 30% of the nominal fusion power followed by
- \Rightarrow 10 days pulsed operation with 48 pulses:
 - \Rightarrow 4 hours at full power
 - \Rightarrow 1h dwell time in between.

\Rightarrow 2st DEMO operation phase:

- ⇒ Continuous operation over 14.8 years (CY) with 10 days at 30% of the nominal fusion power followed by
- \Rightarrow 10 days pulsed operation with 48 pulses:
 - \Rightarrow 4 hours at full power
 - \Rightarrow 1h dwell time in between.

 Decay times for the calculation of the activity inventories and the decay heat: 0 s, 1 s, 5 min, 30 min, 1 hr, 3 hr, 5 hr, 10 hr, 1 day, 3 days, 1 week, 2 weeks, 4 weeks, 8 weeks, 6 months, 1 year, 10 years, 50 years, 100 years and 1000 years.

Materials

Table 1 Vacuum Vessel MaterialComposition (wt%)

316L(N)-IG+ 316L(N)-IG Water elements elements 58.745 FE 63.684 Fe С 0.028 С 0.03 Mn 1.845 ΜN 2 Si SI 0.461 0.5 Ρ 0.023 Ρ 0.025 S 0.009 S 0.01 Cr 16.604 CR 18 Ni 11.531 NI 12.5 2.7 Мо 2.491 MO Ν Ν 0.074 0.08 0.001 В 0.001 В 0.3 Cu 0.277 CU Со 0.046 0.05 CO Nb 0.009 NB 0.01 Ti ТΙ 0.092 0.1 Та 0.009 ΤA 0.01 н 0.868 0 6.887

	Divertor	compoin	cine matei	nui comp							
Euro	ofer	Tun	gsten	(W, H20	, CuCrZr)		Inconel		Ti alloy	١	Water
element		element		element		elen	nent	eler	nent	eleme	nt
Fe	88.698	Al	0.0015	W	81.9957	С	0.08	Ti	88.0075	н	11.2
В	0.002	С	0.003	CR	0.1138	Mn	0.35	Al	6.75	0	88.8
С	0.11	Са	0.0005	ZR	0.0164	Si	0.35	V	4.5		
Ν	0.03	Со	0.001	0	2.5215	Ρ	0.015	Fe	0.4		
0	0.01	Cr	0.002	СО	0.0091	Cr	0.015	0	0.28		
Al	0.01	Cu	0.001	SI	0.0017	Nb	19	Н	0.0125		
Si	0.05	Fe	0.003	CU	15.0245	Та	5.125	Ν	0.05		
Р	0.005	Н	0.0005	Н	0.3172	Со	5.175				
S	0.005	К	0.001			Мо	1				
Ti	0.02	Mg	0.0005			Fe	3.05				
V	0.2	Mn	0.0005			Al	11.634				
Cr	9	Мо	0.01			Ti	0.5				
Mn	0.4	Ν	0.0005			Ni	0.9				
Со	0.01	Na	0.001			В	52.5				
Ni	0.01	Nb	0.001			Cu	0.006				
Cu	0.01	Ni	0.0005								
Nb	0.005	0	0.002								
Мо	0.005	Р	0.002								
Та	0.12	Pb	0.0005								
W	1.1	S	0.0005								
As	0.05	Si	0.002								
Sn	0.05	Та	0.002								
Sb	0.05	Ti	0.0005								
Zr	0.05	Zr	0.0005								
		W	99.9595								
		Ag	0.001								
		As	0.0005								
		Ва	0.0005								
		Cd	0.0005								

Table 2 Divertor components material Composition (wt%)

0.0005

Zn

Example of results I (Neutron flux)

1123 represents 316L(N)-IG material and 1159 - 316L(N)-IG+water

Simona Breidokaite | 8th Demo workshop | Vienna, Austria | 30.08.-02.09.12.2022 | Page 7

Example of results I (Nuclide inventory)

Table 3 Summary data for investigated layers with principle nuclide identified

Name of zone	Material	Activity [Bq]					Decay heat [kW]						Princ. Radionuclide				
		1 s	1 month	1 year	10 years	100 years	1 s	1 month	1 year	10 years	100 years	1 s	1 month	1 year	10 years	100 years	
НСРВ																	
Dinne	Eurofer	2.45E+17	7.19E+16	4.12E+16	4.01E+15	5.91E+11	4.70E+01	2.42E+00	6.50E-01	5.95E-02	5.29E-06	Mn56	Fe55	Fe55	Fe55	others	
Fipes	Water	1.52E+16	2.28E+12	2.27E+12	2.22E+12	2.13E+12	1.76E+01	1.66E-04	1.66E-04	1.64E-04	1.61E-04	N16	C14	C14	C14	C14	
	Eurofer	4.22E+18	1.31E+18	7.98E+17	7.70E+16	8.47E+12	8.12E+02	3.84E+01	1.13E+01	8.55E-01	7.96E-05	Mn56	Fe55	Fe55	Fe55	others	
Plates	Water	1.35E+17	1.26E+13	1.26E+13	1.21E+13	1.13E+13	1.57E+02	9.16E-05	9.15E-05	9.10E-05	8.94E-05	N16	C14	C14	C14	C14	
	Tungsten	2.38E+18	2.79E+17	2.09E+16	1.54E+13	7.46E+10	2.26E+02	5.75E+00	4.20E-01	4.73E-03	4.24E-06	W187	W185	W185	W185	others	
Wichhono	Ti alloy	5.14E+14	2.15E+13	3.12E+12	5.00E+10	1.03E+09	2.02E-01	4.48E-03	2.97E-04	5.62E-08	8.01E-09	V52	Sc48	Sc48	Ca45	others	
wishbolle	Inconel pin	1.02E+15	4.95E+14	9.43E+13	9.65E+12	4.05E+11	1.54E-01	1.11E-01	2.30E-02	3.22E-03	3.86E-06	Ta182	Ta182	Ta182	Co60	others	
	Eurofer (support)	1.33E+17	5.17E+16	3.32E+16	3.16E+15	1.98E+11	2.73E+01	1.59E+00	4.67E-01	2.30E-02	2.59E-06	Mn56	Fe55	Fe55	Fe55	others	
PEC	Tungsten (I - III layer)	3.40E+18	5.82E+17	4.23E+16	3.03E+13	1.47E+11	2.93E+02	1.18E+01	8.33E-01	8.92E-03	8.81E-06	W187	W185	W185	W185	others	
PFC	W + CuCrZr+ Water (II layer)	4.01E+18	4.96E+17	3.75E+16	1.01E+15	1.54E+14	3.98E+02	1.11E+01	1.64E+00	2.97E-01	4.31E-04	W187	W185	W185	W185	others	
Cassatta badu	Eurofer	2.53E+18	7.73E+17	4.39E+17	4.23E+16	6.09E+12	4.93E+02	2.96E+01	7.60E+00	6.32E-01	5.75E-05	Mn56	Fe55	Fe55	Fe55	others	
Casselle bouy	Water	8.04E+16	2.41E+13	2.41E+13	2.37E+13	2.28E+13	9.40E+01	1.84E-04	1.84E-04	1.84E-04	1.81E-04	N16	C14	C14	C14	C14	
	WCLL																
Piper	Eurofer	3.03E+17	8.31E+16	4.64E+16	4.56E+15	7.74E+11	5.69E+01	2.80E+00	7.31E-01	7.97E-02	6.94E-06	Mn56	Fe55	Fe55	Fe55	others	
Fipes	Water	1.49E+16	3.09E+12	3.08E+12	3.01E+12	2.89E+12	1.74E+01	2.33E-05	2.33E-05	2.33E-05	2.29E-05	N16	C14	C14	C14	C14	
	Eurofer	5.07E+18	1.46E+18	8.70E+17	8.47E+16	1.08E+13	9.55E+02	4.29E+01	1.24E+01	1.14E+00	1.02E-04	Mn56	Fe55	Fe55	Fe55	others	
Plates	Water	1.34E+17	1.74E+13	1.73E+13	1.66E+13	1.55E+13	1.57E+02	1.26E-04	1.26E-04	1.25E-04	1.23E-04	N16	C14	C14	C14	C14	
	Tungsten	2.94E+18	3.00E+17	2.18E+16	1.72E+13	7.97E+10	2.89E+02	6.21E+00	4.45E-01	5.57E-03	4.52E-06	W187	W185	W185	W185	others	
Wichhono	Ti alloy	6.52E+14	1.76E+13	2.68E+12	5.19E+10	1.42E+09	2.59E-01	3.55E-03	2.37E-04	6.01E-08	1.12E-08	V52	Sc48	Sc48	Ca45	others	
wishbolle	Inconel pin	1.19E+15	5.88E+14	1.12E+14	1.19E+13	5.40E+11	1.84E-01	1.36E-01	2.88E-02	4.13E-03	4.62E-06	Ta182	Ta182	Ta182	Co60	others	
	Eurofer (support)	1.43E+17	5.37E+16	3.40E+16	3.25E+15	2.32E+11	2.88E+01	1.72E+00	4.82E-01	2.70E-02	3.11E-06	Mn56	Fe55	Fe55	Fe55	others	
PFC	Tungsten (I - III layer)	3.98E+18	6.30E+17	4.43E+16	3.22E+13	1.54E+11	3.54E+02	1.29E+01	8.92E-01	9.81E-03	9.43E-06	W187	W185	W185	W185	others	
	W + CuCrZr+ Water (II layer)	4.75E+18	5.54E+17	4.01E+16	1.02E+15	1.50E+14	4.72E+02	1.25E+01	1.73E+00	3.03E-01	4.21E-04	W187	W185	W185	W185	others	
Cassette body	Eurofer	3.05E+18	8.85E+17	4.89E+17	4.76E+16	7.78E+12	5.84E+02	3.44E+01	8.54E+00	8.22E-01	7.36E-05	Mn56	Fe55	Fe55	Fe55	others	
casselle bouy	Water	7.95E+16	3.21E+13	3.20E+13	3.14E+13	3.03E+13	9.29E+01	2.44E-04	2.44E-04	2.43E-04	2.40E-04	N16	C14	C14	C14	C14	

Table 4 Summarizing data for investigated layers with principle nuclides identified

	Activity						Decay Heat						Princ. Radionuclides					
	1 second	1 month	1 year	100 years	1000 years	1 second	1 month	1 year	100 years	1000 years	1 second	1 month	1 year	100 years	1000 years			
НСРВ	PBq							MW										
Inner shell	4.10E+03	6.20E+02	3.00E+02	1.10E+01	2.70E-01	1.10E+00	4.00E-02	2.90E-02	3.00E-05	9.20E-07	⁵⁶ Mn	⁵⁵ Fe/ ⁶⁰ Co	⁵⁵ Fe/ ⁶⁰ Co	others	others			
Interspace	2.20E+04	3.70E+03	1.70E+03	7.50E+01	1.70E+00	6.50E+00	1.60E-01	1.20E-01	2.10E-04	4.70E-06	⁵⁶ Mn	⁵⁵ Fe/ ⁶⁰ Co	⁵⁵ Fe/ ⁶⁰ Co	others	others			
Outer shell	2.50E+01	4.60E+00	2.20E+00	6.50E-02	1.60E-03	6.70E-03	2.60E-04	1.70E-04	1.80E-07	4.90E-09	⁵⁶ Mn	⁵⁵ Fe/ ⁶⁰ Co	⁵⁵ Fe/ ⁶⁰ Co	others	others			
WCLL																		
Inner shell	7.50E+02	1.40E+02	6.80E+01	1.90E+00	4.70E-02	2.10E-01	8.40E-03	5.40E-03	5.30E-06	1.50E-07	⁵⁶ Mn	⁵⁵ Fe/ ⁶⁰ Co	⁵⁵ Fe/ ⁶⁰ Co	others	others			
Interspace	2.40E+03	4.10E+02	1.90E+02	7.70E+00	1.80E-01	6.80E-01	1.80E-02	1.30E-02	2.20E-05	4.90E-07	⁵⁶ Mn	⁵⁵ Fe/ ⁶⁰ Co	⁵⁵ Fe/ ⁶⁰ Co	others	others			
Outer shell	1.40E+01	3.00E+00	1.50E+00	3.30E-02	8.70E-04	3.60E-03	1.60E-04	9.10E-05	9.30E-08	2.70E-09	⁵⁶ Mn	⁵⁵ Fe/ ⁶⁰ Co	⁵⁵ Fe/ ⁶⁰ Co	others	others			

Simona Breidokaite | 8th Demo workshop | Vienna, Austria | 30.08.-02.09.12.2022 | Page 8

DONES:

 The Demo-Oriented NEutron Source (DONES) is an irradiation facility for testing candidate materials for DEMO reactor and future fusion power plants

DONES: MODELS

Li Sampling Cell pipes

Simona Breidokaite | 8th Demo workshop | Vienna, Austria | 30.08.-02.09.12.2022 | Page 9

Methodology, computational model and source

Gamma radiation source in Li pipes loop from Be-7 – 0.4774 MeV and ACPs

- Gamma transport calculations, dose rate and gamma flux were performed by means of particle transport code MCNP.
- Dose rate maps were produced using ADVANTG WW.

Results examples

Simona Breidokaite | 8th Demo workshop | Vienna, Austria | 30.08.-02.09.12.2022 | Page 12

Articles for more information

- <u>Breidokaitė S.</u>, <u>Stankūnas G.</u>. <u>Neutron Flux in EU DEMO Divertor Cassette Body Using HCPB and WCLL Breeding Blanket</u> Models In: Journal of Fusion Energy. New York: Springer, 2022, Vol. 41, 41, p. 1-6. ISSN 0164-0313 , eISSN 1572-9591.
- <u>Breidokaitė S.</u>, Eade T., Berry T., <u>Stankūnas G.</u>, <u>Tidikas A.</u>. <u>Activation analysis and evaluation of the radionuclide inventories</u>, <u>decay heat for European DEMO divertor components</u> In: *Applied Radiation and Isotopes*. Oxford: Elsevier, 2022, Vol. 187, 110314, p. 729-741. Scopus . ISSN 0969-8043, eISSN 1872-9800.
- <u>Breidokaitė S.</u>, <u>Stankūnas G.</u>. <u>Activities in Divertor Reflector and Linear Plates Using WCLL and HCPB Breeding Blanket</u> Concepts In: *Energies*. Basel: MDPI, 2021, Vol. 14, 8305, p. 1-16. ISSN 1996-1073.
- <u>Stankūnas G.</u>, <u>Breidokaitė S.</u>, <u>Tidikas A.</u>. <u>Activation Analysis and Evaluation of Radionuclide Inventory Decay Heat for EU</u> <u>DEMO Vacuum Vessel Components</u> In: *Fusion Science and Technology*. Philadelphia: American Nuclear Society, 2021, Vol. 77, Iss. 7-8, p. 791-801. ISSN 1536-1055, eISSN 1943-7641.
- <u>Tidikas A.</u>, <u>Stankūnas G.</u>. <u>Activation analysis of the European DEMO divertor with respect to the different breeding blanket</u> segmentation In: *Fusion Engineering and Design*. Lausanne: Elsevier, 2020, Vol. 161, 112012, p. 1-6. ISSN 0920-3796, eISSN 1873-7196.
- <u>Stankūnas G.</u>, Tidikas A., <u>Application of ADVANTG Code for the SDDR Calculations on IFMIF-DONES Target Assembly and</u> <u>HFTM</u> In: *IEEE TRANSACTIONS ON NUCLEAR SCIENCE*. Piscataway: IEEE, 2022, Vol. 69, No. 6, p. 1225-1228. ISSN 0018-9499.
- Stankunas G, Tidikas A, Neutronic analysis of IFMIF-DONES test cell cooling system. In Applied Radiation and Isotopes, 2020, Volume 163, ISSN 0969-8043,

Thank you for your attention

Simona Breidokaite | 8th Demo workshop| Vienna, Austria | 30.08.-02.09.12.2022 Page 14

