Qualification of EUROFER97 for TBM: contribution of the EUROfusion project within 2021-2025

Dmitry Terentyev¹, Gerald Pintsuk², Giacomo Aiello³, Edgar Leon⁴, Marta Serrano⁴, Pierre Lamagnere⁵, Véronique Lezaud-Chaillioux⁶, Cristel Caës⁷, Jérémy Hure⁷, Grégory Perez⁷, Alexander Zinovev¹, Yiqiang Wang⁸, M. Carrington⁸, Mario Walter⁹, Jarir Aktaa⁹, Dirk Radloff⁹, Ermile Gaganidze⁹, Davide Bernardi¹⁰, Enrico Perelli Cippo¹¹, Szenthe Ildiko¹², Yann Carin¹³, Zmitko Milan¹³; Vallory Joelle¹³, Poitevin Yves¹³

¹Belgian Nuclear Research Centre, SCK CEN, Mol, 2400, Belgium

²FJZ, Institut für Energie- und Klimaforschung – Plasmaphysik, 52425 Jülich, Germany

³EUROfusion PMU, Boltzmannstraße 2, 85749, Garching, Germany

⁴National Fusion Laboratory, CIEMAT. Avd. Complutense 40, 28040 Madrid, Spain

⁵CEA, DES, IRESNE, Nuclear Technology Department, Cadarache, 13108 Saint Paul-Lez-Durance, France

⁶CEA, DMN/SRMA/LC2M, SACLAY - Bât 607 91191 GIF SUR YVETTE CEDEX, France

⁷CEA, DES/ISAS/DM2S/SEMT/LISN, SACLAY - Bât 607 91191 GIF SUR YVETTE CEDEX, France

⁸United Kingdom Atomic Energy Authority, Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxon OX14 3DB, UK

⁹KIT, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany ¹⁰ENEA C.R. Brasimone, 40032 Camugnano (BO), Italy

¹¹ISTP, Consiglio Nazionale delle Ricerche, Via Roberto Cozzi 53, 20125 Milano - ITALY

¹²EK-CER, KFKI Campus, 1121, Budapest, Konkoly-Thege Miklós út 29-33, Hungary

¹³Fusion For Energy, Josep Pla, 2, Torres Diagonal Litoral B3, Office 07/19, 08019 Barcelona

In this contribution, we provide an overview of the activities implemented by EUROfusion under the umbrella of a collaboration agreement with the domestic agency Fusion for Energy (F4E), aiming at finalizing the qualification of the EUROFER97 steel for the application in ITER TBM as structural material. Under central coordination of EUROfusion, the workflow is subdivided into four streams to address: (i) closure of the gaps in the mechanical and physical properties; (ii) the execution of dedicated mechanical tests to validate design rules according to RCC-MRx code provisions; (iii) characterization of weldments and (iv) assessment of the effect of neutron irradiation on baseline and welded material. The implementation of these tasks is a major international qualification programme shared across seven European organizations, namely: CCFE UK, CEA France, CIEMAT Spain, ENEA Italy, EK Hungary, KIT Germany and SCK CEN Belgium.

EUROfusion contribution covers a number of scientific and technical issues to be tackled along the way. In this contribution, the experimental facilities including neutron irradiation and nuclearized test facilities involved in the programme are reviewed. Specific attention is drawn to the experimental activities targeting the design rules validation, which includes a combination of computational analysis, neutron irradiation and mechanical testing performed according to international standards and RCC-MRx quality requirements. In this respect, the applicability and challenges of the small specimen test techniques (SSTT) is another important topic of specific interest. The overall planning of the activities and its alignment with ITER and DEMO schedules are also presented as well. The ultimate objective of the currently configured programme is to provide maximum achievable input for the next revision and update of RCC-MRx code (in 2025), covering the characterization of EUROFER97 properties up to the end of life for the ITER TBM.