ME I PLANT SYSTEMS DESIGN

New ASME Standard on Plant Systems Design

Technical Meeting on Codes and Standards, Design Engineering and Manufacturing of Components for Small Modular Reactors, 10-13 May 2022

> Ralph Hill, Chair ASME Plant Systems Design Standards Committee Hill Eng Solutions, LLC

Disclaimer

- All statements made by the speaker represent his opinion alone, and do not necessarily represent the position of ASME.
- The speaker is an expert in his field and is a member of several councils, boards and committees of ASME. His presence at this event is not to be construed in any way as an implication of sponsorship by the ASME.

Agenda

- Innovations
- Description, Purpose & Objective
- General Overview
- Design Process Overview
- Key Points

Innovations

- Addresses Design Processes
- System Based
- Using MBSE Tool
 - To plan and write the standard
 - Case Study on MBSE approach:

https://www.innoslate.com/resource/plant-systemsdesign-systems-an-mbse-approach-case-study/

Description

- Design of facilities with the potential for significant hazards to the health and safety of the public, the worker, and the environment, includes:
 - nuclear facilities; fossil power generation facilities (e.g., coal, natural gas); oil refining; oil and natural gas production; petrochemical; chemical; and hazardous waste plants and facilities

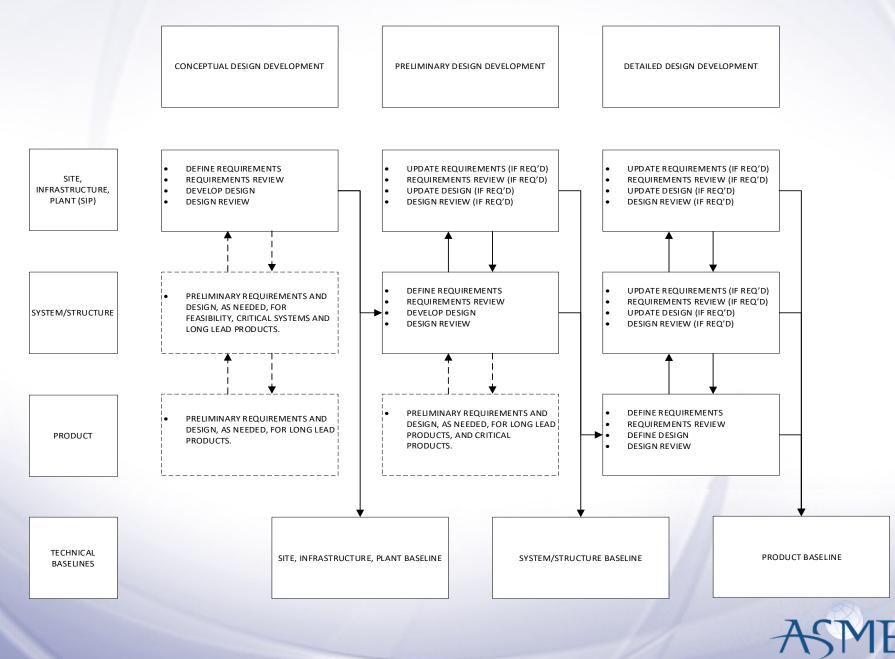
Purpose & Objective

- <u>Purpose</u>: provide enhancements to current industry design practices
- <u>Objective</u>: reduce design errors or omissions that increase the cost of design, construction, operation, maintenance, decontamination, decommissioning, and disposal.

General Overview

- A technology neutral standard that provides a framework, including requirements and guidance, for **design organizations** to:
- Conduct plant process hazard evaluations and analysis in the early stages of design that:
 - advance as the design matures and
 - provide structure to the development of a quantitative risk assessment.
- Integrate systems engineering design processes, practices, and tools with traditional architect engineering design processes, practices, and tools.
- Integrate risk informed probabilistic design processes, practices, and tools with traditional deterministic design processes using reliability and availability targets.

Four Subobjectives


- 1. Safer and more efficient system designs and design alternatives with quantified safety levels
- 2. More effective requirements management
 - including assumptions, TBDs and TBVs
- 3. Cover the **entire life cycle** of a plant (design, construction, operation, decontamination and decommissioning)

4. Be system based, vs. component based, and cover multiple disciplines (mechanical, electrical, instrumentation & control, HVAC, etc.)

PSD-1 Design Process Overview

SETTING THE STANDARD

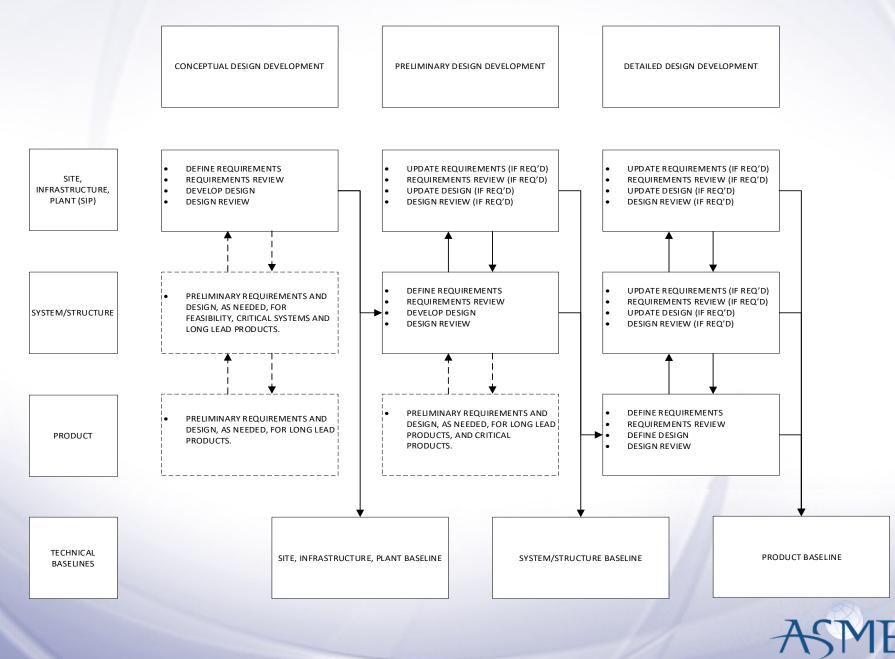
Key Terms

1. Design development activities

- establishing technical requirements
- allocating requirements
- functional design
- engineering design
- verification

2. Conformed Contract

- Customer requirements
- Site conditions
- Regulations
- Design constraints
- Stakeholder needs
- External interfaces
- Industry codes & standards



Key Terms

3. Product

- Material
- Hardware
- Firmware and Software
- Device
- Assembly and Subassembly

SETTING THE STANDARD

Conceptual Design Development

Inputs

Contract technical requirements Site conditions

Regulations

Design criteria

Stakeholder needs

External interfaces

Industry codes & standards

Analyze & Allocate Contract Technical Requirements

Develop Plant & Infrastructure Functional Designs

Develop Plant & Infrastructure Physical Designs

Verify Plant & Infrastructure Designs

Outputs

SIP Functional requirements SIP Performance requirements Site layout drawings SIP Functional diagrams SIP Interface requirements SIP Design constraints SIP Environmental requirements SIP Health & Safety requirements

SIP Production requirements

ASME SETTING THE STANDARD

Preliminary Design Development

Inputs

SIP Functional requirements SIP Performance requirements Site layout drawings SIP Functional diagrams SIP Interface requirements SIP Design constraints SIP Production requirements SIP Environmental requirements SIP Health & Safety requirements Analyze & Allocate Requirements to Systems & Structures

Develop Systems & Structures Functional Designs

Develop Systems & Structures Physical Designs

Verify System & Structure Designs

Outputs

SS Functional requirements

SS Performance requirements

SS Derived requirements

SS Interface requirements

SS Functional diagrams

System design documents (P&IDs)

Structural plans and elevation drawings

SS Production requirements

SS Health & Safety requirements

SS Environmental requirements

Inputs

- SS Functional requirements
- SS Performance requirements
- SS Derived requirements
- SS Interface requirements
- SS Functional diagrams
- System design doc's (P&IDs)
- Structural plans and elevation drawings
- SS Production requirements
- SS Health & Safety requirements
- SS Environmental requirements

Detail Design Development

Analyze & Allocate Requirements to Products

> Develop Product Functional Designs

Develop Product Physical Designs

Verify Product Designs

Outputs

"Build to" specifications

Engineering design documents

Engineering drawings

Construction drawings

Hardware lists

Software design documents

Software code

Physical form, fit & function characteristics

Testing requirements

Purchase specifications

Preliminary Design Development

Inputs

SIP Functional requirements SIP Performance requirements Site layout drawings SIP Functional diagrams SIP Interface requirements SIP Design constraints SIP Production requirements SIP Environmental requirements SIP Health & Safety requirements Analyze & Allocate Requirements to Systems & Structures

Develop Systems & Structures Functional Designs

Develop Systems & Structures Physical Designs

Verify System & Structure Designs

Outputs

SS Functional requirements

SS Performance requirements

SS Derived requirements

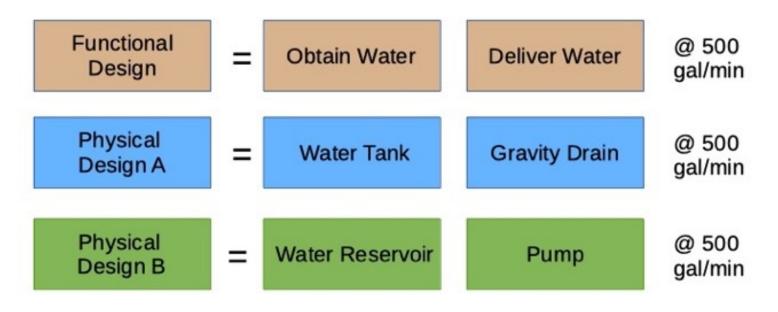
SS Interface requirements

SS Functional diagrams

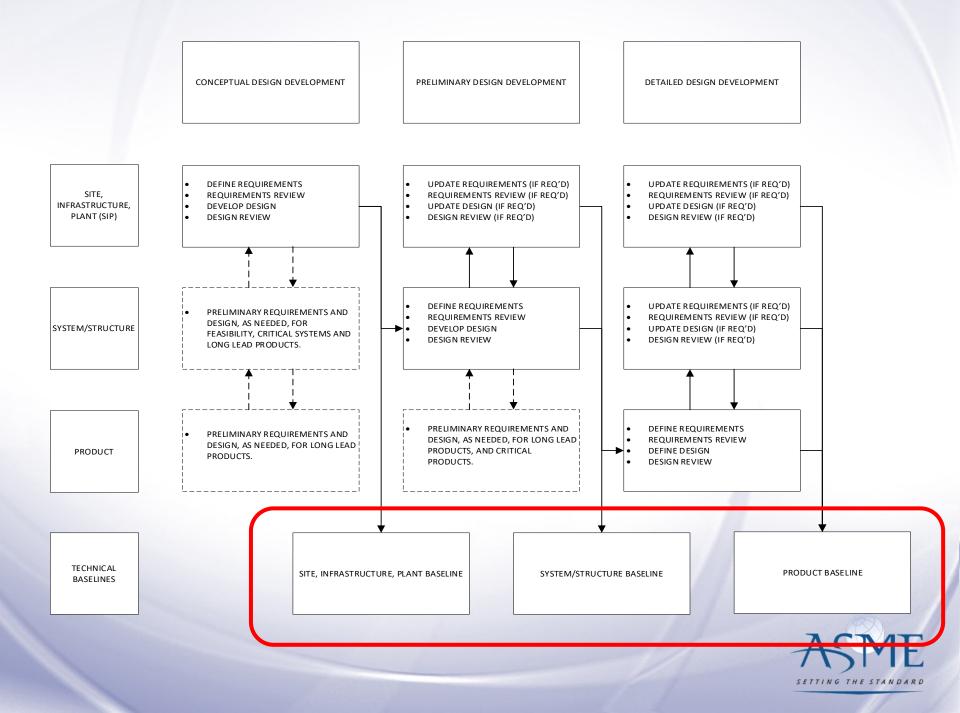
System design documents (P&IDs)

Structural plans and elevation drawings

SS Production requirements


SS Health & Safety requirements

SS Environmental requirements



COOLING WATER EXAMPLE

Functional Requirement: provide cooling water to process system Performance Requirement: 500 gallons per minute

Technical Requirements Definition

1 of 6

Technical requirements definition activities:

- transform customer and other relevant stakeholder needs, goals, and objectives into a technical definition of the problem
- and then into a complete set of technical requirements expressed as "shall" statements
- used for defining a design and related products

ASME Plant Systems Design Standard

- Improve development and traceability of technical requirements.
- Define before beginning design
- Failure to identify and manage requirements has caused about half of all projects to:
 - not meet original goals and objectives
 - have significant cost and schedule overruns and
 - result in inadequate facility capabilities.

22

- Form basis for architecture definition, design, integration, and verification activities
- Enable the description of inputs to and outputs from activities, as well as required relationships between inputs and outputs
- Include constraints, and system interactions with operators, maintainers, and other systems

23

Typically, technical requirements include:

- Functional requirements what functions need to be performed
- Performance requirements –*how well* the functions need to be performed
- Verification requirements show proof of compliance with other technical requirements

Typically, technical requirements also include:

Design constraints

25

- Internal interface requirements.
- External interface requirements
- Health, safety, and environmental requirements
- Environmental requirements
- Codes and standards requirements

ASME Plant Systems Design Standard

Typically, technical requirements also include:

- Regulatory requirements
- Availability and reliability requirements
- Physical and cyber security requirements
- Constructability requirements
- Requirements to support plant operations
- D&D requirements

Key Points

27

- Define technical requirements before beginning design
- Verification and validation requirements are important part of technical requirements definition
- Integration of the required activities and guidance from this Standard into design processes and procedures will reduce design and operational risks and costs

References

- ISO/IEC/IEEE 15288, Systems and software engineering — System life cycle processes, 1st edition 2015-05
- [1] NASA Systems Engineering Handbook, NASA SP-2016-6105, Rev 2, National Aeronautics and Space Administration, NASA Headquarters, Washington, DC, USA, January 27, 2020, also available at:

https://www.nasa.gov/connect/ebooks/nasa-systemsengineering-handbook

- [2] "Requirements Management A Core Competency for Project and Program Success", Project Management Institute, August 2014
- [3] "The Impact of Rework on Construction & Some Practical Remedies", Navigent Construction Forum, August 2012 ASME Plant Systems Design Standard

