IAEA Technical Meeting on Codes and Standards

EPRI's Engineering and Construction Innovations Updates

Hasan Charkas, PhD., P.E. Principal Technical Leader

May 10th, 2022

Advanced Reactors are Here

In this decade...

• Microreactors

2020's

- Non-light water reactors
- Light-water small modular reactors
- ... will be deployed

THE TIME TO PREPARE FOR AN ADVANCED REACTOR FUTURE IS NOW

 \square

 \square

 \square

A sample of EPRI Products to Reduce Deployment Cost

Total Potentia	al Savings from Top	<u>~\$3000/kWe</u> (From: 3002015935)			
Construction Task Duration	Civil/Structural				
New Plants Technical Assistance Program*	Siting Guide - 3002003126	Constructability			
Digital Twins*	Owner-Operator Requirements Guide - 3002015751	Constructability Guide - 3002015932	Materials		
Artificial Intelligence and 3DM Research*	Cost Basis for Utilizing Seismic Isolation for NPP Design- 3002000561	Demonstration of Self Consolidating Concrete- 3002007567	SMR Advanced Manufacturing - 3002011037	Inspection NDE Needs for New Nuclear Plant Designs - 3002013494	
Supplier Quality Management for Construction - 3002000521	Mass Concrete Modeling - 3002007577	Moisture Tolerant Coatings- 3002010563	Modular In-Chamber EBW - 3002018146		
Best Practices for Construction Acceptance Tests- 3002021018	Steel-Plate Composite Research*	Optimizing Concrete Placement - 3002013041	AR Material Development Roadmap*	Inspection Guidance for Reinforced Concrete Construction- 3002015943	
Welding and Fabrication Critical Factors for New NPPs-1019209	Concrete Under Elevated Temperatures*	Modular Construction Roadmap - 3002016067	High Strength Reinforcement- 3002010486	Automated QA Inspection for Embedded Items in Concrete*	

Cost Drivers

*Ongoing

Engineering and Construction Innovation

30AL Identify, develop, qualify engineering and construction technologies that enable:

Reduced Cost | Increased Quality | Improved Efficiency

- Modular Construction **Technologies**
- Structural Health Monitoring •
- **Digital Twin Applications** ٠

Construction Technologies

- **Risk-Informed Performance-based** ٠ **Design Solutions**
- Steel-plate Composite (SC) ٠ Structures Analysis Guide
- Analysis of Systems and • Components

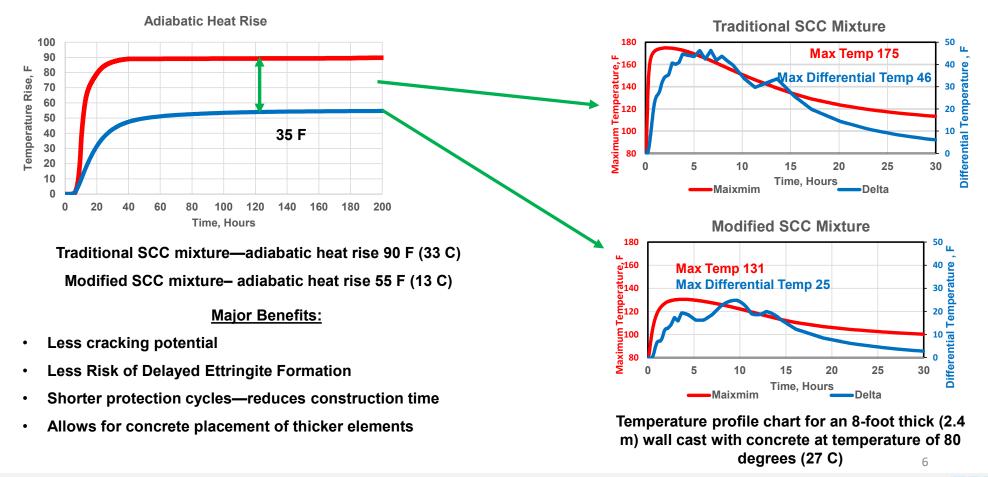
Engineering Solutions

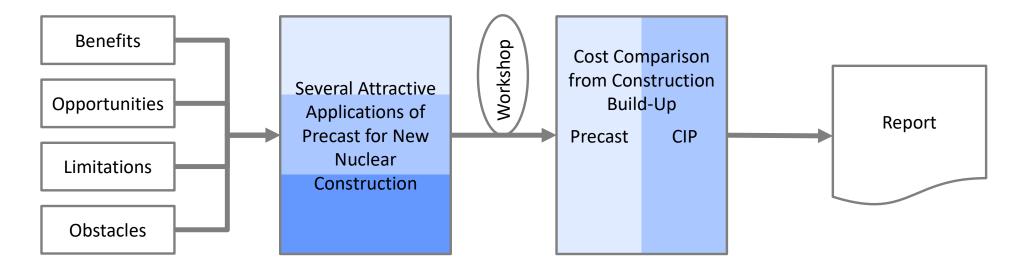
- **Assessing Concrete Behavior** under Elevated Temperatures
- Testing high-strength Large Steel ٠ **Rebars for applications**
- Self-consolidating Concrete for ٠ **Mass Construction Applications**

Concrete and High Strength Rebars

Self Consolidating Concrete (SCC) Used in Mass Concrete Structures

SCC has better flowing ability than conventional concrete and is better suited for areas of heavy congestion


- Traditional self consolidating concrete mixture has a higher heat of hydration than conventional concrete
- The use of alternative materials as a replacement of cement can help lower the temperature rise
- Sixteen SCC mixtures using different cementitious material replacements were evaluated
- Comparison of conventional concrete mixture and SCC
- Modeling was performed to evaluate the temperature heat rise



Self Consolidating Concrete Used in Massive Concrete Structures

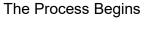
Evaluation of Precast Concrete Construction for New Reactors

Precast concrete may have potential to reduce construction cost of nuclear plants

Apply industry perspectives for meaningful study.

Evaluate Different Concrete Mixtures at Different Temperatures

Nine different concrete mixtures are currently being tested



Making Test Specimens

Water Cured for 28 Days

Record Temperatures

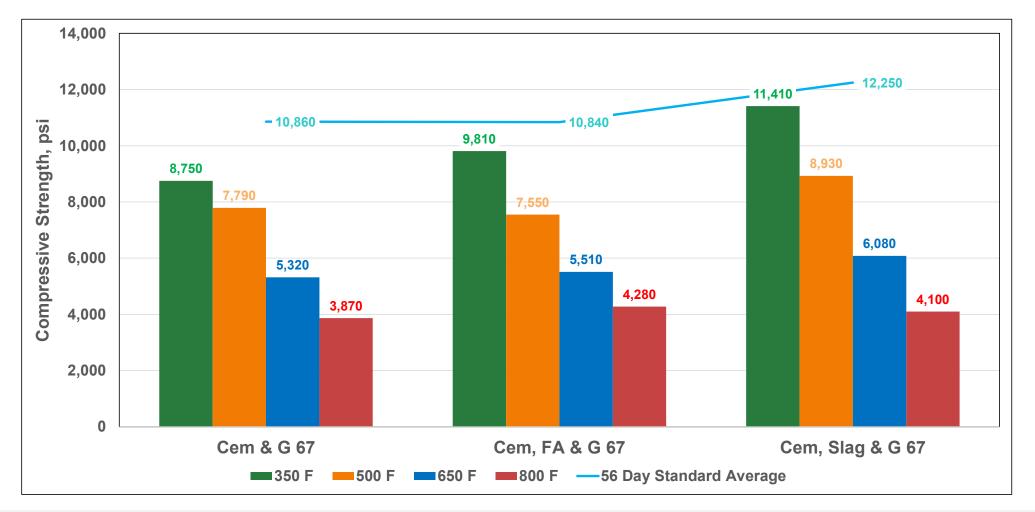
Concrete Heated to 350 to 800 F (177 C – 427 C)

Air Dried for an Additional 28 Days

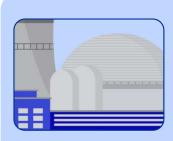
EPRI

Testing Protocol

Remove from oven


Wrap in heated blanket

Test at elevated temperature


Results for Cementitious Materials (10,000 psi = 69MPa)

© 2022 Electric Power Research Institute, Inc. All rights reserved.

EPRI

Assessment Guidance of SC Walls for New Reactors

Objective

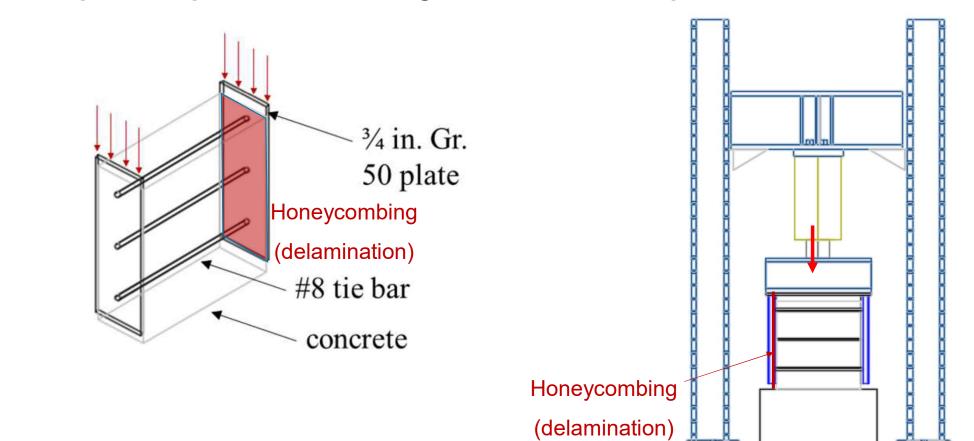
- Identify items in the current design practices for the SCs that need clarifications
- Provide guidance for the identified items
- Experimentally verify the behavior of SC walls with critical flaws and develop approaches for repair and retrofitting of these flaws when identified.

Status

- Engaged diverse industry stakeholders with pertinent experience
- Developed a list of items based on input from designers and analysts
- Working on creating guidance and preparing the experimental studies for critical flaws

Next Steps

• Continue developing the guidance and engagement with industry stakeholders



Assessment Guidance of SC Walls for New Reactors

	Material	Components	Description	Construction Stage	Probability	Location	Pipe Sleeve (for Penetrations Through SC Panel)
Steel	Steel Plate	Plate-plate welding	Fabrication Erection	Low	SC module to module SC wall connections	Steel-Headed Shear Studs Steel Plate Tie Bars Concre	
	Steel	Stud Anchor	Stud welding	fabrication	High	SC module	····
		Tie Bar	Tie welding (circumferential)	fabrication	High	SC module	
		Tie Plate	Fillet welding	fabrication	High	SC module	Embed Plate for Commodity Attachments
	Concrete	Concrete infill	Void in concrete (center) Void in concrete (around stud anchor heads) Honeycombing (delamination)	Erection	High	SC module	Steel Plate

Example of experimental investigations on SC wall specimens

© 2022 Electric Power Research Institute, Inc. All rights reserved.

2022 Project – Geotechnical and Structural Monitoring Considerations for Deeply Embedded **Facilities**

Issue
 Advance Guidance Below g

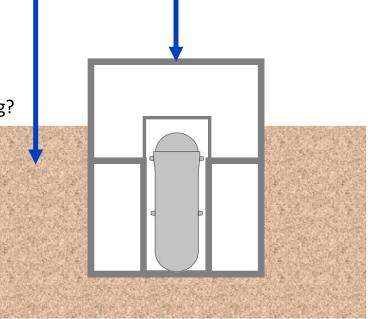
e

- ced Reactors (ARs) developers are exploring designs involving deeply embedded structures
- nce on geotechnical approaches that are not previously used in nuclear applications is needed
- grade monitoring and inspection programs will have an increased importance for long term applications.

Scope

- Characterize potential geotechnical and structural monitoring challenges for deeply embedded structures
- Summarize available techniques and technologies to mitigate and/or accommodate challenges
- List of excavation and engineering best practices for deeply embedded structures construction.

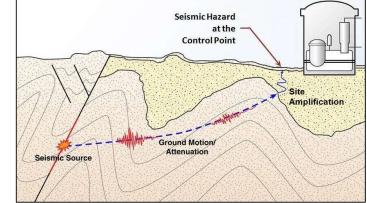
Value


- Inform engineers (structural, geotechnical and construction) of various geotechnical topics
- Proper designs and planning for more efficient and safe construction
- Inform utilities of various pertinent monitoring and inspection programs.

How to address engineering challenges to enable leveraging safety advantages of deeply embedded structures?

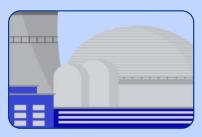
Geotechnical

- Site categorization?
- Subsurface conditions?
- Geo-hazards?
- Site suitability?
- Soil stabilization/strengthening?
- Deep excavations?
- Foundation construction?


Structure Monitoring

- Degradation mechanisms?
- Precursor indications?
- Instrumentation and hardware?
- Uncertainties and variability?
- As-built vs. design configuration?

- Construction loads?
- Accessibility for maintenance?


How to assess the challenges associated with AR design against External Hazards?

- Risk informed performance-based methods for External hazards (i.e., seismic, external flooding, high winds,....) continue to have an important role in the design
- Risk informed due to incorporating seismic PRAs in the design process and inclusion of defense-in-depth adequacy
- Performance based due to using Frequency Consequence (F-C) and performance target of SSCs.

EPR

2022 Project – Risk-Informed Performance Based Design Methods for External Hazards

Issue

- Increasing efforts in the industry is focused on the Licensing Modernization Project (LMP) to enhance the risk informed and performance-based (RIPB) methodologies for ARs (alternative to Standard Review Plan methodology)
- How will this affect the designs and how will it be implemented?

Scope

- Identify challenges and best practices for implementing RIPB methodologies in design for external hazards
- Research design strategies to leverage RIPB methodologies to optimize construction costs
- Work with the AR community to identify common tools and methodologies to enable proper design implementations
- Demonstrate the guidance through engineering design examples

Value

- Common reference for RIPB methodologies in design and a chance to identify challenges to plan resolutions for a smoother implementation
- Identify design strategies for construction cost optimizations

Together...Shaping the Future of Energy™