Consideration of Potential Impacts of Fusion Machine Features on Needs for Hazard Mitigation

Prepared by Scott Willms (ITER, formerly LANL)

Plasma Physics and Technology Aspects of the Tritium Fuel Cycle for Fusion Energy

12 October 2022

Disclaimer: The views and opinions expressed herein do not necessarily reflect those of the ITER Organization

Purpose

- Have been exploring relationships between physics decisions and fuel cycle consequences
- These have the potential knock-on effect of creating hazards
- This is a brief talk to just introduce this relationship

TSTA (Tritium Systems Test Assembly) example

- 200 g tritium necessary to reach regulatory limit
- Inventory was 140 g
- Therefore, no safety class equipment

However. . .

- DEMO-class machines may have tritium inventories which in accidents could result in greater than regulatory dose limits
- Mitigation requires
 - Safety class equipment such as
 - Inventory isolation
 - Detritiation system
 - Formality of operations
 - Greater regulatory scrutiny

Tritium Facility

- Reactive first wall materials may require mitigation systems
- First wall materials may come in contact with steam and/or air through
 - Loss of Flow Accident (LOFA)
 - Loss of Vacuum Accident (LOVA)
 - Loss of Coolant Accident (LOCA)
- Helium-cooled vs. water-cooled
 - Helium-cooled runs hotter
 - Water-cooled runs cooler, but adds a reactant
- Loss of Vacuum and Coolant Accidents (LOVA, LOCA)
 - First wall material reactions following LOVA (air ingress) and LOCA must be considered, and, if necessary, mitigated

- Perspective
 - The entire fusion facility tritium working inventory can be permeated through palladium every hour
- Observations
 - Hydrogen permeability through Ni, Inconel and SS316 is only two to three orders of magnitude lower than Pd
 - Permeabilities for all these materials increase with temperature
 - Gas-cooled machines are hotter than water-cooled machines
- Hazards
 - Tritium permeation in reactor cooling and heat utilization systems will be an issue
 - Substantial amounts of tritium may migrate beyond the reactor and fuel cycle buildings
 - Issues will be worse for gas-cooled designs
 - The associated hazards will need to be identified and mitigated

- Seeding gases
- Operation time
- Disruption mitigation
 - Frequency and severity
- Transmutation products
- Machine configuration
 - Tokamak, stellerator, spheromak, etc
 - Divertor(s) and first wall configuration
 - First wall tritium holdup and recovery
 - VV confinement strategy
- Others

Conclusions

- Fusion reactor design choices affect hazards and associated mitigations. Examples are:
 - Fuel processing rates -> tritium inventory -> segregation and detritiation systems
 - Cooling/heat utilization choices -> tritium migration -> more extensive confinement systems
- There is a strong relationship between physics/reactor design choices and fuel cycle choices. These choices also affect the facilities hazards and their potential need for mitigation.
- To date, solutions exist for all identified hazards
 - Though some are more complicated than others
- Consideration of hazards must continue as fusion develops