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Quantities of Tritium in Fusion Devices

e Fusion reactors consume tritium at rate of 152 g/GW-d, and
must breed it the same rate or higher

e This is about 103x the rate of production in a MSR, 10%x of a LWR

e The plasma burns only a small fraction each pass, so fueling
rate must be 20-200x larger

e Future reactors will produce ftritium in a breeding blanket at the
same rate it is consumed or higher to fuel other devices

e Safety concerns include:

- Permeation of tritium through high temperature blanket and HX
stfructures (pipes, vessel walls, etc.)

— Large tritium inventories in components
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Safety requires that tritium releases must be kept low

« DOE standard limits on routine airborne and liquid releases:
— National Emission Standards for Hazardous Air Pollutants (40 CFR 61): 0.1 mSv/yr (10

mrem/yr)
— National Primary Drinking Water Regulations (40 CFR 141.16): 0.04 mSv/yr (4 mrem/yr)

— All sources (10 CFR 20.1301): 1 mSv/yr (100 mrem/yr)

TABLE 1. Requirements for protection of the public from exposure to radiation?

Fusion radiological release Regulatory limit
_ requirement ~ (evaluation guideline)
Normal and anticipated 0.1 mSv/yr (10 mrem/yr) 1 mSwv/yr (100 mrem/yr)
operational occurrences
Off-normal conditions (per 10 mSv (1 rem) (No 250 mSv (25 rem)
event) public evacuation)

« Dose conversion for stack releases depends on site characteristics, but for generic site
considered for FNSF analysis, 0.1 mSv/yr (10 mrem/yr) -> 0.29 g T/yr

— 0.29 g T/yr = 10 FNSF fusion/breeding rate

OAK RIDGE 'DOE-STD-6002-96, “Safety of Magnetic Fusion Facilities: Requirements” hitps://www.standards.doe.gov/standards-documents/6000/6002-astd-1996
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Trittum flows and loss paths
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e Losses:

From breeding zone to
coolant (permeation through
structure)

From breeder and coolant
pipes to building (permeation
through pipe walls)

From primary to secondary
coolant (permeation through
HX walls)

> To Tritium Plant
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Safety analyses seek
to quantify the rate of
tritium loss through all
systems, in both
normal and off-normal
operating scenarios

The Tritium Migration
and Permeation
(TMAP) code was
originally developed at
INL for this purpose



Diffusion/Permeation

e The fundamental driver of tritium migration
is its ability to diffuse through metals, with
permeation flux | = —D(9C/0dx)

P, P, « At moderate to _high pressures, the partial
pressure and solid concentration at

—> gas/solid interfaces are related by
To Sieverts’ Law: C; = Ks./P;
“ \ e The resultant “permeation” flux is given by
G J= DKs(C; — C3)
X
— e The constant of proportionality @ = DK is
X the permeability
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Perkins and Noda J. Nucl. Mater. 71 (1978) 349-364.
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Mass transport in liquids

e Especially in liguids, convective mass transport
processes may be important or rate-limiting

i[ML) l} Jur = KT(CO - C1,£)
I  Mass transport coefficients may be obtained from
o turbulent diffusion models (e.g. in CFD/MHD analyses)

= \ e Or from suitable empirical correlations for the
j Sherwood number, Sh = xK;/D

- Analogue of the Nusselt number

e E.g., Sh = BRe*Sc? where Sc is the Schmidt number
(Prandtl number analogue): Sc¢ = u/pD
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Combined fransport phenomena: permeation from a pipe

e Transport processes:
— Axial convection
— Radial mass tfransport
- Interface condition (solubility ratio or Sieverts' law)
— Diffusion through (high permeability) tube wall

*
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Rate-limiting phenomenao

o All fransport phenomena can be modeled using computer
codes, but some systems have a clear rate-limiting effect

« Can be understood through dimensionless numbers like the
permeation humber:

W = 2KaxVP Diffusion resistance
DKg Surface resistance

« Others!2 can be formulated:

_ DKss _ Mass transport resistance Kq4RT _ Mass transport resistance

— ~ ~y

K7Ks pX Diffusion resistance Kt Surface resistance

e These are ratios of fransport resistances, analogous to the Biof
number in heat transfer

OAK RIDGE 'P. W. Humrickhouse, Fus. Sci. Technol. 68:2 (2015) 295-302; https://doi.org/10.13182/FST14-941
%National Laboratory 2P. W. Humrickhouse, INL/EXT-20-59927, https://www.osti.gov/biblio/1777267
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Trapping e

Gtt =a,f,C —a.C,
* Trifium Is subject 1o frapping af . _Trapped concentration (m)
defect sites in structural materials a, - Trapping rate coefficient (!

fi — Probability of landing in a trap site (-)
C,.— Mobile concentration (m-3)

» The density of trap sites increases a, — Release rate coefficient (s
with radiation damage; R

irradiation increases the density D — Tritium difusion coefficient (ms-)
Of hlgher eﬂergy TrG ps A —jump distance or lattice constant (m)

¢ — Trap site concentration (m-3)
N — Bulk material atom density (m-3)
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Trittum fransport through the first wall

e Trittum incident on the FW/divertor with flux ¢ will be implanted
some depth x, info the material

e It may then:
- Diffuse (a very short distance) back to the FW surface
— Diffuse (a much longer distance) through the FW 1o He coolant

* In surface-limited case, up to 50% of
implanted tritium permeates through
FW into coolant
Most T — Xo\ PKr «1
back to <« D
lasma
P 50/50
< > B. L. Doyle J. Nucl. Mat. 111-112 (1982) 628-635.
https://doi.org/10.1016/0022-3115(82)90277-X
¥OAKRIDGE  Diffusion Limited Surface Limited
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Estimates of FW plasma-driven permeation

Reference Design __| Permeationrate _INotes

Wienhold, J. Nucl. Mater. 93-94 (1980) 866-870. o
hitps:) /001017 10.1016/0022.3 1(5(80))90220—2 INTOR 4.5 g/day Wall temp 600 °C

Baskes, J. Nucl. Mater. 111-112 (1982) 663-666. _ _ o
hgrlsos?/s/doi.grgﬂoﬁ o 6/0022-31 25(82;90286—0 INTOR 0.005 - 8.8 g/day Wall tfemps from 200 — 500 °C
Brice, J. Nucl. Mater. 120 (1984) 230-244. |NTOR OO] 1 — 0039 g/doy wall ’remp ]OO OC o bCICk}

https://doi.org/10.1016/0022-3115(84)20061-8

dT from 0 — 300 °C

Pisarev, Sov. Atom. Energy 62:2 (1987) 87-93. -6 _ i i 1 1
hitps://doi.org/10.1007/BF01123660 INTOR 10 2 g/doy ggg;:gpeli} rfrf(?errlel?\(ifel(s)n

Ogorodnikova, Fusion Eng. Des. 49-50 (2000) 921-926. -5 _ i
https://doi.org/10.1016/S0920-3796(00)00339-2 EU DEMO 2x10 81 g/dcy ?Lrﬁggleyérg:]u;ﬁgﬁd by

Huang, Fusion Eng. Des. 152 (2020) 111430. — i —
https://doi.org/10.1016/].fusengdes.2019.111430 CFETR 0.35-3.15 g/dOy Fusion power 0.2-1.5GW
NTSCIIE, NUS, MICHET, [Eiee) 248 A1) 101RE7. EUDEMO  0-0.16-6.6 g/day W armor thickness and many

https://doi.org/10.1016/i.nme.2021.101039

other parameters varied

e In the FNSF study, plasma-driven permeation increased FW inventories
by ~20%, but did not significantly influence circulating tritium
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Trittum transport analysis of the FNSF

* The Fusion Nuclear Science Facility (FNSF) is a
518 MW US design featuring a DCLL blanket

o Trifium permeation and the influence of design
features was systematically analyzed

* The base design had tritium permeation losses
of 6.18 g/yr, larger than 0.29 g/yr target

— Partly a result of conservative parameter
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choices (e.g. lowest measured T solubility in PbLi)

e More optimistic choices (within measured
ranges) give as low as 0.05 g/yr

— Driven primarily by PbLi pipe losses

e Quantitative effect of design features
systematically evaluated...
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Trittum fransport analysis of the FNSF (cont’'d)

e Significant design features and impacts: 45
— DCLL Blanket

« High flow rates reduce residence times

» SIiC flow channel inserts act as a permeation barrier
- High efficiency (95%) vacuum permeator for

T extraction from PblLi

e Arelatively compact design based on tantalum T , : .
permeator tubes (764 ,15m long) provided, but 60%  70%  80%  90%  100%
needs engineering demonstration PbLi Extraction System Efficiency (%)

e Permeation increases significantly as efficiency is
reduced

— Concentric hot/cold leg piping Permeation
« Single most effective mitigation!
e Permeationincreases to 115 g/yr without it
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D. Levchuck, J. Nucl. Mater. 328 (2004) 103.
https://doi.org/10.1016/j.jnucmat.2004.03.008

Permeation barrier coatings o —

e
1 :
 The FNSF design did not take credit forany  :° = ;—-E-‘-‘Tf%i%f‘-’-ﬂ-‘f" :
permeation barriers e
P [ e e e e e Elﬁ
» Ceramic (e.g. AlL,O,, Er,0,) coatings have v R
shown significant promise in laboratory I i
settings, but significantly degraded adition tesing o itmibydrogen vare
performance in reactor environments Bar Bl
» The reasons are not completely understood, o e
out may result from a combination of: e GO
- Degredation of the coating (e.g. cracks)’ Wl AmsSugam 1
— Radiation-enhanced diffusion?2 G. W. Hollenberg, Fus. Eng. Des. 28 (1995) 190.

https://doi.org/10.1016/0920-3796(95)90039-X

- Radiation damage to microstructure?
'R. Causey, in Comprehensive Nuclear Materials, 2012.
. . 2W. Luscher, J. Nucl. Mater. 437 (2013) 373.
e« Remains an ongoing area of research XD Pan, Nuel. Fsion 61 [2021] 036004
%gf\KRIDGE
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https://doi.org/10.1088/1741-4326/abcf8c
https://doi-org.ornl.idm.oclc.org/10.1016/0920-3796(95)90039-X

Guard pipes

 Permeation barriers may be effective in less demanding
environments that target permeation loss paths, e.g. on the
outside of ex-vessel piping

o Other engineered barriers may be effective here as well

* In the FNSF design, guard pipes swept with low pressure He
significantly reduced permeation with no significant heat loss

He purge Outer pipe Inner pipe Heat Tritium Sweep Gas >
velocity (m/s) temp (C) temp (C) loss (W) loss (g/y)
N/A _ Sl ) 4.2] AT
0.1 94 416 65 0.014
1.0 353 414 2,083 1.19 ,
ARIIIEIIRIIIRIIIRRIIRIIIIR IR IR
10.0 350 414 21,350 0.58

%OAK RIDGE Sweep Gas >




Summary

 Trittum is highly mobile in high-temperature systems and this
migration poses a significant safety & environmental issue for
future fusion reactors

« Solution, diffusion, surface effects, mass transport, and trapping
all play a role in tritium transport predictions

- Parameter uncertainties are a significant hindrance to predictive models
— Integral test data needed for validation

e Inner (plasma/exhaust) and outer (blanket) tritium loops couple
at plasma facing surfaces

- Implantation models predict widely variable permeation rates through
the FW; this topic is worthy of additional experimental scrutiny

 Permeation barriers are needed 1o help limit tritium permeation
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