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Outline

• Sources and main objectives for the different types of impurities

• Radial transport of impurities in the confined plasma and resulting profiles 

• Transport mechanisms in the different parts of the confined plasma (from core to edge)

• Conclusions
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Impurity sources

• Erosion at first wall (W, Be, C …) 

• Production of He in the core

• Intentionally injected impurities to invoke
radiation losses (e.g. N, Ne, Ar, Kr, …)

nHeTD 14
2

3
1

2
1 +→+

3.5MeV 14.1MeV
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Main objective for He

• Low global confinement time

• Figure of merit:

• Optimal impurity transport when
- Helium profile in confined plasma is hollow
- strong compression of Helium in divertor area

and pump duct (not covered)

burn condition
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Main objective for W

• Low Te at wall to have low yield YpW

for sputtering of W by projectile p

• Low W confinement time

• Figure of merit:
tungsten concentration in the core

• Optimal impurity transport when
- strong prompt redeposition of eroded W 
- W profile in confined plasma is hollow

burn condition
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Main objective of injected impurities:
Increase radiation losses at the plasma edge

• but little impurity radiation in the centre

• Edge can be the edge of the confined plasma 
(DEMO), the divertor (ITER) or the X-point region

• Figures of merit:
- radiation loss at edge / radiation loss in the core
- radiation loss at edge/ fuel dilution in the core

• Optimal impurity transport when
- impurity profile in confined plasma hollow
- strong compression of impurity in divertor area

(for divertor radiators, see talk A. Kallenbach) 

Cooling factors
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Equilibrium profile of impurities in the confined plasma

• Radial Flux

• Transport equation

• Density gradient in temporal equilibrium

HeHe, ...W

• Radial profile of impurities in temporal 
equilibrium determined by v/D
v<0  → inward drift → peaked profile
v=0  → purely diffusive → flat profile
v>0  → outward drift → hollow profile

• He
additional peaking in core when D is too low
(small effect)

• Accumulation (=much stronger peaking of 
impurity than of main ion) must be avoided
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Turbulent and collisional transport contribution 

neoclassical (collisional) transport
• due to Coulomb collisions between impurity

and main species (and other impurity species)

turbulent (anomalous) transport
• due to micro instabilities

Next slides
• main effects of the two mechanisms

• regions where one of the two channels 
dominates
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Collisional transport contribution 

• Neoclassical drift 

• Peaking with respect to main ions

outward (0 > H > -0.5)inward

collisional (neoclassical) transport
• Inward drift with gradient of nDT

• Outward drift with gradient of Ti

(temperature screening)

• v/D increases linear with Z

Accumulation of High-Z impurities when 
neoclassical transport is dominant
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Turbulent transport contribution 

• Anomalous drift 

• Peaking with respect to main ions

turbulent transport
• present when gradients of T or n exceed 

a critical value 

• Several drift terms (thermo-diffusion, roto-
diffusion, pure convection)

• However v/D rather small
- weakly scales with Z and mass
- transport mainly due to fluctuating ExB-drifts

(ExB-drift does not depend on Z or m) 

Accumulation never observed when turbulent 
transport prevails
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Collisional impurity transport in the very core and edge   

Neoclassical
• Inner core (for all Z)

- no turbulence
- gradients of Te, Ti, n < critical value
- depends on strength of central heating

• Close to core
- only for high-Z elements in

toroidally rotating plasma

• Edge transport barrier in H-Mode
- turbulence suppressed
- collisional for all Z

Turbulent
• close to Core

- for low-Z elements

• confinement region
- for all Z



M A X - P L A N C K - I N S T I TU T F Ü R  P L A S M A P H Y S I K  |  R A L P H  D U X  |  11 . 1 0 . 2 0 2 2 I A E A T M  . . .  F U E L C Y C L E 1 2

Example for dominant neoclassical transport in the core (ITB) 
Accumulation for high-Z   

For JET plasma with internal transport barrier
• Strong impurity gradients just inside barrier of Ti

• Here weak Ti gradient but density peaking

• Z-dependence as expected for neoclassical
transport 

JET

R. Dux et al, 
J. Nucl. Mat. 313(2003) 1150.  
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Suppression of central W accumulation via central ECRH   

central heating increases turbulent transport
far above collisional transport and accumulation
stops

AUG

R. Dux et al, 
J. Nucl. Mat. 313(2003) 1150.  
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Collisional impurity transport in the very core and edge   

Neoclassical
• Inner core (for all Z)

- no turbulence
- gradients of Te, Ti, n < critical value
- depends on strength of central heating

• Close to core
- only for high-Z elements in

toroidally rotating plasma

• Edge transport barrier in H-Mode
- turbulence suppressed
- collisional for all Z

Turbulent
• close to Core

- for low-Z elements

• confinement region
- for all Z
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Poloidal asymmetry of impurity density on flux surface
modifies Pfirsch-Schlüter transport

• Pfirsch-Schlüter flux due to friction forces 
resulting from Pfirsch-Schlüter flows

• Flows and fluxes reverse sign at top and bottom

• Total effect from average along flux surface

constant impurity density on flux surface
• Fluxes at LFS and HFS cancel in lowest order

poloidal asymmetry on flux surface
• No cancelation of fluxes

• Can lead to a strong increase of flux surface 
averaged PS flux 

Γ
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Poloidal asymmetry only for impurities with large mass and Z

• Centrifugal force pushes impurities with 
large mass to the outboard side and 
produces a density asymmetry on the flux 
surface

• only  for impurities with large mass
• Poloidal asymmetry of fast ions produces 

additional potential difference on flux 
surface (ICRH, NBI)

Potential difference from quasi-neutrality on FS, 
(influence of fast ions) 

centrifugal force, 
(tor. Mach number) 

AUG2.5MW NBI + 4.3MW ICRH

T. Odstrcil et al (2018) PPCF 60, 014003. 
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Poloidal asymmetry of W as measured with soft X-ray cameras
fits to theoretical predictions

• Agreement of observed and calculated 
asymmetry 

Potential difference from quasi-neutrality on FS, 
(influence of fast ions) 

centrifugal force, 
(tor. Mach number) 

AUG

T. Odstrcil et al (2018) PPCF 60, 014003. 
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Increase of Pfirsch-Schlüter transport for higher W density at 
outboard side

• Enhancement of Pfirsch-Schlüter diffusion 
coefficient

• temperature screening 
- decreases for high ν*
- increases for low ν*

C. Angioni et al (2015)
Phys. Plasmas 22, 055902. 

JET

Neoclassical
Turbulent

w/o poloidal asymmetries

with poloidal 
asymmetries

Increase of the PS transport of 
W in JET plasmas with 17MW NBI 

(up to a factor of 20)
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Increased temperature screening for higher W density at 
outboard side when collisionality is low

D. Fajardo et al (2022) to be subm. to PPCF 

In a fast rotating plasma: 

• temperature screening (=outward convection 
due to Ti-gradient) decreases with collisionality

• Compared to vtor=0 the total vneo is
- more inwardly directed in AUG 
- more outwardly directed in hot JET plasmas

(and in a burning plasma) 



M A X - P L A N C K - I N S T I TU T F Ü R  P L A S M A P H Y S I K  |  R A L P H  D U X  |  11 . 1 0 . 2 0 2 2 I A E A T M  . . .  F U E L C Y C L E 2 0

Increase of Pfirsch-Schlüter transport for higher W density at 
outboard side

Example for the increase of the PS transport of W in JET plasma with 26MW NBI (up to a factor of 100)

F. J. Casson et al (2020) Nucl. Fus. 60, 066029. 

JET

PA
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Increase of Pfirsch-Schlüter transport also found in direct 
measurements

• Measured dependence of diffusion coefficient of 
tungsten on poloidal asymmetry confirms this 
increase

• agreement with neoclassical theory within factor 2-3 

In a large burning tokamak plasma 
• Low toroidal rotation due to small momentum source

(α-heating with small addition of external heating)

• PS transport of high-Z elements again small

T. Odstrcil, et al (2018) PPCF 60, 014033. 

AUG
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Heat transport is more turbulent in larger tokamaks

Rescale ITER standard scenario
• At constant R/a, Ip/a2, n/nGW, RBt/Ip
• Use τE,IPB98 to get T for given Pheat

• ½ of Pheat inside ρ=r/a=0.3

• Calculate Qneo and compare with Qtot

For typical heating powers in the large tokamaks
• Heat transport is much stronger dominated by 

turbulent transport than in smaller machines

• Coefficient of turbulent impurity diffusion will be
even higher than that of heat diffusion (next slides)

C. Angioni et al, NF 57 (2017) 022009.  
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Turbulent impurity diffusion coefficient is larger than the ion 
heat diffusion coefficient at Qe ≈ Qi

C. Angioni et al, Phys. Plas. 22 (2015) 102501.  

• Set of nonlinear gyro-kinetic simulations with GKW
- Ti=const. , Qe+Qi=const.
- vary R/LTe, R/LTi, Te/Ti to change Qe/Qi

- ZW = 41

• W diffusion: DW/χ
- <<1 for Qe>>Qi (TEM) and Qi>>Qe (ITG)
- maximum >> 1 for Qe = (1-2)Qi

• Same result from linear runs
- maximum of DW/χ when real mode frequency 

is slightly above zero
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Turbulent impurity diffusion coefficient is larger than the ion 
heat diffusion coefficient at Qe ≈ Qi

• Set of nonlinear gyro-kinetic simulations with GKW
- Ti=const. , Qe+Qi=const.
- vary R/LTe, R/LTi, Te/Ti to change Qe/Qi

- ZW = 41

• W diffusion: DW/χ
- <<1 for Qe>>Qi (TEM) and Qi>>Qe (ITG)
- maximum >> 1 for Qe = (1-2)Qi

• Same result from linear runs
- maximum of DW/χ when real mode frequency 

is slightly above zero

• and from quasi-linear analytical description
- also for low-Z impurities

C. Angioni et al, Phys. Plas. 22 (2015) 102501.  ≈ Qi/Qe
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Turbulent impurity diffusion coefficient is larger than the ion 
heat diffusion coefficient at Qe ≈ Qi

Recent impurity transport measurement also show this trend of Dz/χeff with Qe/Qi

T. Odstrcil et al, Phys. Plas. 59 (2020) 082503.  R. McDermott et al, Nucl. Fus. 62 (2022) 026006.  

B5+

Al13+

AUG

DIIID
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Collisional impurity transport in the very core and edge   

Neoclassical
• Inner core (for all Z)

- no turbulence
- gradients of Te, Ti, n < critical value
- depends on strength of central heating

• Close to core
- only for high-Z elements in

toroidally rotating plasma

• Edge transport barrier in H-Mode
- turbulence suppressed
- collisional for all Z

Turbulent
• close to Core

- for low-Z elements

• confinement region
- for all Z



M A X - P L A N C K - I N S T I TU T F Ü R  P L A S M A P H Y S I K  |  R A L P H  D U X  |  11 . 1 0 . 2 0 2 2 I A E A T M  . . .  F U E L C Y C L E 2 7

No accumulation due to turbulent transport 

Equilibrated density profiles of He2+ and B5+

as measured by CXRS are 
• either a bit more peaked than ne

• or hollow

• but never much stronger peaked than ne

A. Kappatou et al, Nucl. Fus. 59 (2019) 056014.  

He2+ B5+
AUG
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No accumulation due to turbulent transport 

Agreement with calculated gradients is often
good but not in all cases
• the cases with hollow boron profiles are below

the theoretical values outside the error margin

R. McDermott et al, Nucl. Fus. 62 (2022) 026006.  
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Collisional impurity transport in the very core and edge   

Neoclassical
• Inner core (for all Z)

- no turbulence
- gradients of Te, Ti, n < critical value
- depends on strength of central heating

• Close to core
- only for high-Z elements in

toroidally rotating plasma

• Edge transport barrier in H-Mode
- turbulence suppressed
- collisional for all Z

Turbulent
• close to Core

- for low-Z elements

• confinement region
- for all Z
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Neoclassical impurity transport in the edge transport barrier
(ETB)

CXRS measurement of impurity profile evolution 
in the plasma edge during ELM cycle

• He, C, Ne and Ar

• peaking of impurity density in ETB between ELMs

• peaking increases with Z

• flattening of gradient during ELM

AUG

T. Pütterich et al,
J. Nucl. Mater.
415 (2011) S334.  
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Neoclassical impurity transport in the edge transport barrier 
(ETB)

AUG

• transport coefficients D and v in accordance
with collisional transport

• v is always inwardly directed

• collisionality of impurities in Pfirsch-Schlüter regime

W has even higher Z in ETB:

• higher collisionality and collisional diffusion

• stronger peaking

Outward transport due to edge MHD modes (e.g. ELM‘s) is
needed to control the impurity content

T. Pütterich et al,
J. Nucl. Mater.
415 (2011) S334.  
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Neoclassical impurity transport of W in the ETB of ITER

Neoclassical drift velocity

• Z of W is high

• nDT gradient → inward

• Ti gradient for ν*< 200 H≈-0.5 → outward

• Rise of Ti is large

W density across pedestal in temporal equilibrium

• strongly non-linear function of Z R. Dux et al, PPCF 56 (2014) 124003.  
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Neoclassical impurity transport of W in the ETB of ITER
helps to maintain low W concentrations

ITER ETB – scan of nsep

• Q=10 B=5.3T Ip=15MA

• Tped=4.5 keV, Tsep=300 eV

• nped=8.5x1019m-3

• nsep=(2-4.3)x1019m-3

• vneo, Dneo from NEOART code

W density across pedestal in temporal equilibrium
• for separatrix densities in the range

of (3-4)x1019m-3 (needed for power exhaust) the drift is mainly 
outward 

• neoclassical transport provokes a decrease of the W density 
from the separatrix to the inside

R. Dux et al, PPCF 56 (2014) 124003.  

R/Ln = 620 !
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Conclusion
impurity transport less problematic in a large burning plasma

• Reduced danger of central accumulation of high-Z elements
- no increase of PS-transport due to large toroidal rotation
- impurity transport more turbulent 

• Turbulent diffusion in confinement area never leads to strong peaking
– often the profiles are more hollow than predicted by theory

• ETB: for pedestal profiles as needed to achieve fusion and a cold divertor 
- large Ti rise and high nsep

- neoclassical transport provokes hollow impurity profiles  
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Collisional impurity transport in the very core and edge   

Neoclassical
• Inner core (for all Z)

- no turbulence
- gradients of Te, Ti, n < critical value
- depends on strength of central heating

• Close to core
- only for high-Z elements in

toroidally rotating plasma

• Edge transport barrier in H-Mode
- turbulence suppressed
- collisional for all Z

Turbulent
• close to Core

- for low-Z elements

• confinement region
- for all Z



M A X - P L A N C K - I N S T I TU T F Ü R  P L A S M A P H Y S I K  |  R A L P H  D U X  |  11 . 1 0 . 2 0 2 2 I A E A T M  . . .  F U E L C Y C L E 3 6

Net W source much lower than gross erosion due to 
prompt redeposition 
Characteristic lengths
• Ionisation lengths of W, W+

Important effects for W redeposition:
• λion > wMPS → gyro motion of W+

• λion
+ < ρW+,max → multiple ionisation

• λion < wMPS → electric field

for ELMs in ITER the fraction of non-redepositing W is < 10-3 ! A. Chankin et al, PPCF 56 (2014) 025003.
P. C. Stangeby, Nucl. Fus. 52(2012) 083012. 

λion

ρW+

ta
rg

et

only gyro
motion of 

W+

B

+ multiple
ionisation

+ electric field

• width of magnetic pre-sheath

• Max. Larmor radius of W+
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