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DD vs DT plasmas in TFTR: clear differences

• From the first pulse significant differences between DD and DT plasmas
• Indications of different transport for DD and DT
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DD vs DT plasmas energy confinement time

• JET vs TFTR confinement time: the complete zoo
• Isotope dependence is plasma configuration dependent
• ITER projection uses:<A>0.2
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DD vs DT plasmas in TFTR

• Heat transport significantly changes from DD to DT
• Particle transport confinement seems to follow heat transport
• No clear information about D vs T transport
• Theories raised at that time never really validated 
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First theoretical studies of D vs T transport

• Gyrokinetic simulations: 
asymmetry between D 
and T particle transport

• Higher inward pinch for T
• Important assumptions

• 50%D-50%T
• 1/LTe,i(D)=1/LTe,i(T) 
• 1/Lne,i(D)=1/Lne,i(T) 

[Estrada-Mila POP 2005]
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Isotope effects in DT ITER plasmas: heat flux reduction

• Including finite beta and ExB effects (full 
simulation)

• Ion heat flux reduction of 42% from DD 
to DT 

• 3 times reduction of heat flux from DD 
to full DT+ fast ions

GK Non-linear results of ITER hybrid scenario with GENE at 𝜌𝜌 = 0.33
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[J. Garcia et al. NF17]

[J. Garcia et al. POP18]

Important assumptions
50%D-50%T
1/LTe,i(D)=1/LTe,i(T) 
1/Lne,i(D)=1/Lne,i(T) 
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Isotope effects in DT ITER plasmas: D vs T transport

•Total ion particle transport reduction from 
DD to DT 

•Same trend as for heat transport
•D vs T particle transport more complex:

• Asymmetry between D vs T particle 
transport

• Lower T than D particle flux

GK Non-linear results of ITER hybrid scenario with GENE at 𝜌𝜌 = 0.33

[J. Garcia et al. PPCF 22]
[J. Garcia et al. POP 18]
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Preparation for JET-DT: modeling activities 

• Core particle transport studied for 
JET-DT preparation

• JET-DT extrapolation from DD: 
JINTRAC and qualikiz transport 
model

• Improved heat and particle 
confinement with increasing mass 

• Assuming 50/50% D/T source 
nearly identical D and T densities 
in DT

[F. Casson et al. NF 20]
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Preparation for JET-DT: experiment activities 

• D beams injected into H-rich or D-
rich plasma

• Measured edge H/D concentration 
similar to derived core concentration

• Insensitivity to core particle source

D-richH-rich

[M. Maslov et al. NF 18]
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Fast ions mixing concept in multi ions plasmas

• Theoretically analysed in the Quasi-
linear GK approximation

• Ion densities determined by 
transport in ITG regime

• Fast ion mixing core ion density 
insensitive to core particle sources

• Shown in multi-ion integrated 
modelling simulations with QuaLiKiz

[C. Bourdelle et al. NF 18]

[M. Marin et al. NF 21]

H-rich D-rich
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• Plasma behavior observed in LHD characterized 
as either
• Mixing, where isotope ratio is flat and insensitive to 

particle sources
• Non-mixing, where isotope ratio in non-uniform

• Consistent with JET results for ITG plasmas

Mixing and non-mixing states in LHD

[Ida PRL 2019; Ida NF 2021]
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Core energy confinement
• T and DT plasmas show higher core 

energy confinement than D and H
• Notably at high input power
• In agreement with previous theoretical 

studies 
• Heat transport reduced in DT with:

• Rotation 
• Beta
• Collisonality

[P. Schneider AAPPS conference 2021]

[Garcia NF17]
[Casson NF20]
[Mariani NF21]



Jeronimo Garcia| | | 11/10/2022| Page 19IAEA-TM Viena 

Variation of H-mode pedestal structure with D-T fuel mix

• Increased pedestal density from H to D 
[CF Maggi et al., PPCF 2018]
[L Horvath et al., NF 2021]
[P Schneider et al., NF 2022]

• Changes on transport characteristics 
[Horvath NF21]

• Pedestal density also increases in DT
• Crucial data for improving ITER 

predictions

Increasing T 
content

[L Frassinetti et al.]

Controlled D-T fuel mix scan at constant βN
(obtained with feedback control on injected power)
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Hybrid scenario at high beta: DD vs DT

• Hybrid scenario (high beta) in DT 
(~50%/50%) and DD 

• Same input power (alpha power 
compensated by NBI power)

• Same requested neutral gas 
injection

• 50/50% D-T beams
• Higher density and stored energy 

in DT
• Better confinement in DT

[A. Kappatou APS-DPP conference 2022]
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T and D gas injection in hybrid

• Equivalent neutral gas injection 
rate requested in DD and DT

• Similar T and D gases injected
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Measured D/T fraction at the plasma edge

• Equivalent neutral gas injection 
rate requested in DD and DT

• Similar T and D gases injected
• D/T fraction measured at the 

divertor: ~50/50% 
• For the DD case ~95% of D
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Neutron rate reproduced witn TRANSP and edge measurements

• Equivalent neutral gas injection rate 
requested in DD and DT

• Similar T and D gases injected
• D/T Ratio measured at the divertor: 

~50/50% 
• For the DD case ~95% of D
• Neutron rate calculated with 

TRANSP
• Agreement with measurement 

assuming D/T ratio in the core as in 
the edge

[Z. Stancar APS-DPP conference 2022]



Jeronimo Garcia| | | 11/10/2022| Page 24IAEA-TM Viena 

• Plasma composition: 15%D - 85%T 
• Max pure Deuterium NBI heating 

(30 MW)
• Record steady fusion energy: Efus= 

59MJ
• Non-thermal fusion production 

dominant

15%D - 85%T plasma with D-NBI (2.5MA/3.86T)

Input power [MW]

Fusion power [MW]

Core electron temperature

Radiated power

Time [s]
First ever tested on JET or anywhere else

H-mode scenario with optimized non-thermal fusion power

[M. Maslov]

Core ion temperature
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Measured D/T ratio at the plasma edge: NBI source influence

NBI injection

• Measured D/T ratio at the 
plasma edge ~85%T

• Clear influence of the D beam 
injection 
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Neutron rate reproduced with TRANSP and edge measurements

• Measured D/T ratio at the 
plasma edge ~85%T

• Clear influence of the D beam 
injection 

• Neutron rate well reproduced 
by TRANSP assuming core and 
edge same D/T ratio

• Neutron rate dominated by 
beam-target fusion reactions

[Z. Stancar APS-DPP conference 2022]
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Neutron rate prediction at low input power

[Y. Kazakov]

• ~50%/50% DT plasma with T or D 
beams

• High ICRF power injected
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Neutron rate prediction at low input power

• ~50%/50% DT plasma with T or D 
beams

• High ICRF power injected
• Experimental neutron rate 

overestimated by TRANSP in both D 
and T beams phases

• In general, overestimation of neutron 
rate at low input power

• Regardless ICRF vs NBI power
• Reasons under investigation

[Z. Stancar APS-DPP conference 2022]
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D-T mixture control: pellets vs neutral gas

• Different D-T plasma fueling tested
• Neutral Gas Injection
• Pellets

• Can the 50-50% DT mixture be 
controlled?

[M. Valovic]

D
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• Different D-T plasma fueling tested
• Neutral Gas Injection
• Pellets

• Can the 50-50% DT mixture be 
controlled?

• 50-50% mix achieved and controlled by 
adjusting pellet frequency

• High neutron level show potential 50-
50% mixture in the core being 
analyzed

• Essential information for ITER

D-T mixture control: pellets vs neutral gas

[M. Valovic]
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Tritium budget & reprocessing

The Active Gas Handling System (AGHS) was extensively refurbished for DTE2 to provide:
• Daily gas feed to torus & NBI
• Daily gas exhaust recovery and overnight storage
• Weekly reprocessing and accountancy every 3 weeks
• ( but note schedule changes for technical machine issues )

In addition to the total available gas, we had a daily limit of 11g on the inventory allowed on the torus & 
NBI cryopanels (Safety Case)  see later for budget management
Tritium used:

T + D-T (until Dec 2021) : ~ 170g ( TIMs ) and ~ 680g ( T-NBI )
DTE1 : ~ 35g ( shorter campaign + one NBI box + single TIM )

Jan Feb March    Apr May Jun    Jul Aug Sept    Oct Nov    Dec
W1 W2 W3 W4 W5 W6 W7 W8 W9 W10W11W12W13W14W15W16W17W18W19W20W21W22W23W24W25W26W27W28W29W30W31W32W33W34W35W36W37W38W39W40W41W42W43W44W45W46W47W48W49W50W51W52

T&DT experiments           

Operator plasma ops       

No ops or T reprocessing

TT campaign DTE2

Tritium on site for DTE2 
was ~68g (21g in DTE1)
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T and DTE2 : experiments & budgets management

T and D-T experiments managed very differently from usual JET ops in D:
• each experiment split into Scientific goals, each with its own allocation of pulses 

(good/max) / tritium & neutrons
• experiments were given a number of pulses in a day, rather than entire sessions
• strict daily control of tritium and neutron budget ( on the basis of improved 

offline & online pre-pulse validation tools )
• preparation and validation of pulses much earlier than usual ( months instead of 

days ), with extensive documentation for each pulse & clear processes for 
updates

• both high priority and back-up / top-up pulses fully prepared
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Conclusions

• D and T transport is not symmetrical  isotope effects in heat and particle 
transport

• In ITG regime multi ions plasmas, core ion densities largely insensitive to core 
fuelling

• In high power JET DT plasmas, core D/T ratio largely in agreement with edge 
ratio

• Insensitive to particular details of NBI fuelling
• Neutron rate well predicted by TRANSP 
• Core D/T ratio relatively easy to control with neutral gas injection, including very 

high density plasmas
• Low power JET DT plasmas might show deviations from this picture being 

analysed 
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Integrated Ne seeded radiative H-mode achieved in D-T

• Integrated scenario with Ne seeding 
demonstrated for the first time in D-T 
with ITER-relevant Be/W wall

• Well-controlled long pulse 
• With detached divertor plasma (fRAD ~ 

0.6)
• With good plasma energy confinement
• Confirms Ne as promising extrinsic 

radiator for ITER
Strongly reduced divertor 
temperature with Ne seeding
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