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Where we have been...and where we need to go....
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Main points of this talk

Permanent T retention in plasma-facing materials does not appear to
have been considered in T-handling system models

There is a very low allowable probability of permanent T retention in
PFCs while keeping TBR>1

We need to have high-fidelity, high-confidence predictions of retention
for a. credible FPP design

There are MANY B-PMI effects that influence retention that must be
understood & incorporated in these predictions

These require multi-effect (ion flux, composition & energy; surface
temperature; trace impurities; displacement damage) B-PMI experiments
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Schematic of Tritium fuel handling
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Schematic of Tritium fuel handling models
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Displacement Damage Increases Fuel Retention in
Plasma-exposed PFCs
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This leads to inward diffusion front of deeply trapped

fuel in FW & PFCs
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Main points of this talk

* Permanent T retention in plasma-facing materials does not appear to
have been considered in T-handling system models

* Thereis a very low allowable probability of permanent T
retention in PFCs while keeping TBR>1

* We need to have high-fidelity, high-confidence predictions of retention
for a. credible FPP design

e There are MANY B-PMlI effects that influence retention that must be
understood & incorporated in these predictions

* These require multi-effect (ion flux, composition & energy; surface
temperature; trace impurities; displacement damage) B-PMI experiments

* Linear plasma edge/divertor simulators provide requisite platform




Global tritium
particle balance model

[from G.R. Tynan, PSI Rome 2016, NME 2017]

Tritium migrating
Into wall

(l . R)M;'HH

Tritium injected
into plasma

Where:

TBR = Tritium breeding ratio

R = Recycling coefficient
Pourm = fraction of trittum burned
Nge = fueling efficiency

A ring  arburn
NI — NI

In steady state, the rate of T injection
must equal the rate of loss (burned or
trapped 1n the surrounding material)

+ (1= R) My,

The rate of T burned is
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Particle balance model for
trittum fuel cycle self-sufficiency

Puapped — trapping probability due to implantation

PburnTfue
Ptrapped <K (TBR — 1) (1 _ R) P Jfuel

I — Pburn/fuel

Where:
IT{:Equa |Tlgramg TBR = Tritium breeding ratio
(1-R) M el R = Recycling coefficient
& Pburm = fraction of tritium burned

Npe = fueling efficiency

Tritium injected
into plasma

Typically: TBR ~ 1.05, R ~ 0.99-0.999,
Pourn ~ 0059 Ntyel ~ 20-30%

Gives Pygppea ~ 100 — 107



Experiments show retention probability drops with fluence in
undamaged W
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Retention fraction within limits in undamaged W
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But there is a Substantial Retention Increase in Damaged W
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Will W have acceptable D/T retention for self sufficient
tritium breeding (TBR >1) after displacement damage?
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Losses below 1 in 10° T into the first wall, or
lower, is needed for fusion to be self sufficient in
breeding T fuel.

e With W PMI (no damage) this can be achieved.
Not so clear with simultaneous damage occurring.

Simultaneous displacement damage and plasma
exposure changes the relaxation cascade
dynamics

e Vacancies are stabilized.

No D retention data at high fluence and high dpa.

Existing D retention data is from sequential
displacements followed by plasma exposure.

No data exists for D retention due to
simultaneous displacement damage and
plasma exposure.

Mater. Energy 18, 56 (2019)



Euro-DEMO modeling shows significant B-PMI
impact on T inventory & time to TBR>1
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Main points of this talk

Permanent T retention in plasma-facing materials does not appear to
have been considered in T-handling system models

There is a very low allowable probability of permanent T retention in
PFCs while keeping TBR>1

We need to have high-fidelity, high-confidence predictions
of retention for a credible FPP design

There are MANY B-PMI effects that influence retention that must be
understood & incorporated in these predictions

These require multi-effect (ion flux, composition & energy; surface
temperature; trace impurities; displacement damage) B-PMI experiments

New PMI facilities being prepared to permit these multi-effect studies




Many interlinked aspects to this modeling challenge

* Cross-field and parallel edge/SOL transport modeling

— Turbulent-based transport (BOUT++, etc...) & time-averaged fluid modeling (SOLPS, etc...)
 Wall & Divertor Erosion and Redeposition

— ERO, GITR, DIVIMP, etc....
e Surface & Near-surface Evolution from Plasma Irradiation

— WALDYN, ?7??

* Bulk Material Evolution due to Neutron Irradiation w/ Transmutation, Defect
Production & D/T/He retention
T

* On FPP-relevant timescales (> hours to days of discharge duration) these processes
are inter-dependent

 Thus we need interlinked validated models to predict T behavior in FW and PFCs
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B-PMI modifies near-surface zone....which will impact
retention behavior....
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MANY B-PMI effects that influence retention that must

be understood to confidently predict retention in FPP

Mixed materials

Co-deposition
He nanobubbles: can inhibit fuel migration into bulk

Nano-fuzz: Can shield substrate from plasma; modifies matl
properties

Nano & microscale morphology evolution: changes transport of
eroded material in plasma

Displacement Damage w/ Plasma Irradiation: May inhibit defect
annealing



Perhaps the most famous plasma created mixed-
material surface comes from TFTR

Poloidal direction ——

g5b 20060418 BEMills

Inner bumper limiter tiles showed
regions of erosion, regions of
deposition and regions of both
erosion and deposition (seen here)

Composition and morphology of
mixed-material surface was much
different than the originally
designed plasma-facing surface
(dubbed ‘tokamakium’)

Surface layers consist of C, D, O
and metals

Layer composition changed with
depth (i.e. with tokamak
operational conditions)

B. E. Mills et al., J. Nucl. Mater 162-164(1989)343.



The complexity of mixed-material formation conditions
was demonstrated at PISCES
in the mid 1980s

e During identical Ar plasma
exposure conditions of SS

— a) Room Temp. surface w/o
Mo impurities in plasma

— a) 4009C surface w/o Mo
impurities in plasma

— a) Room Temp. surface with
Mo impurities in plasma

— b) 4002C surface with Mo
impurities in plasma

gEKU x18680

* Surface temperature is a key
variable whose affects may be
difficult to predict

" % . . A = -‘/\ . <
“é}K‘E/\{%ﬁEﬁ? f:/ y - ‘E.EIU"”"SEQE.‘-"

D. M. Goebel et al., J. Nucl. Mater. 145-147(1987) 61.



JET (Be/C) and ASDEX (W/C) have also observed
mixed-material formation
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MANY B-PMI effects that influence retention that must

be understood to confidently predict retention in FPP

Mixed materials
Co-deposition
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Nano-fuzz: Can shield substrate from plasma; modifies matl
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He or D/He Plasmas Form Near surface He nano-bubbles in W

3002C

(a) bright field image (under focused)

surface

(c) over focused

10 nm
=

Fig. 4. Cross-sectional microstructure in the W sample exposed to D + He mixture
plasma at E; ~ 120eV, ¢p ~ 5 x 1077 m2, T, ~ 773 K, and cye ~ 5%. As seen in the
circles, He bubbles interconnect and make larger clusters.

Fig. 2. Cross-sectional microstructure, observed with TEM, in the W sample [from M. Miyamoto et al.,, INM 415(2011)5657]
exposed to D+ He mixture plasma at E; ~ 60eV, @y ~5 =10 m~2, T, ~573 K,

Che ~ 5%. As pointed with arrows, He bubbles have bright and dark contrasts in

under (b) and over (c) focused images, respectively.



These He bubbles act as a diffusion barrier to D

Single step (D, He) exposure Two step, He pretreat, D plasma exposure
(He) T,= 473K, E = ~30-50 eV
(D-0.25He) T,=473 K, E;,,= 50 eV (D,) T.=473K, E,,=50eV, Fp, = 5-8 x1026 m=2

Mixed D,-He compared to pure D,  Low/High flux He prior to D,, compared
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No saturation in D retention up to fluence of 2 x 102 m™

10%seconds
of ITER Divertor Flux

ITER plasma discharge seconds

. 0 100 1000  10° /  No saturation in D retention in
10 o PISCESBO, plasma ' J W with high-fluence deuterium
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4021l Normalized time>° scaling | . .
—~ 643 K * 5% He* flux during deuterium
= Q/ plasma exposure drastically
§ 107 M 8 mm thick —/ reduces D retention in W at
% samples 643 K
"0 lserlrrlnl?oltehsmk / e Evidence for a reduced
retention with higher flux, but
10'8|detectidplimit T gy T ___)_ _ | a systematic study is needed

10 102° 1% 107 102®* 102 °* NEED STUDIES IN HIGH-TEMP
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He bubbles can (partially) survive rad-damage &

still reduce D retention

D/W

NRA D Profiles
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MANY B-PMI effects that influence retention that must

be understood to confidently predict retention in FPP

Mixed materials
Co-deposition
He nanobubbles: can inhibit fuel migration into bulk

Nano-fuzz: Can shield substrate from plasma; modifies matl
properties

Nano & microscale morphology evolution: changes transport of
eroded material in plasma

Displacement Damage w/ Plasma Irradiation: May inhibit defect
annealing



W Temperature Influences PMI Effects

~ 600 - 700 K ~ 900 - 1900 K

PISCES-B: pure He plasma
M.J. Baldwin et al, NF 48 (2008) 035001

(a) Bright field image (under focused image)

26x1027 /m? 0.9x 1027 /m?
26 + 2 +
1200 K, 4290 s, 2x10 He m 25 V e 37% 102 /mes 1.2% 102 /mis
3 7200 s 7200 s
2100 K 2600 K

mwm @147 UC PISCES

NAGDIS-II: pure He plasma

N. Ohno et al., in IAEA-TM, Vienna, 2006
": " e » 3 1250 K, 36000 s, 3.5x10%” He*/m?, 11 eV He*

v e a N
PISCES-A: D,-He plasma
M. Miyamoto et al. NF (2009) 065035
600 K, 1000 s, 2.0x10%* He*/m?, 55 eV He*

* Little morphology .
* Occasional blisters 100 namygVPS W on 'IEM)
* Surface morphology

* Evolving surface
* Nano-scale ‘fuzz’

D. Nishijima et al. INM (2004) 329-333 1029



Dissimilar layer expts prove nano-fuzz grows by migration
of substrate up into tendrils

W-Mo, 1000 K Mo-W, 1075 K

1. Thin nm W/Mo films deposited on Mo/W substrates
2. Exposure to pure “He plasma at T, = 340-1075 K

3. Composition by sputter-AES and TEM/EDX

W film on Mo

* T,<750K: no material mixing & only 2 nm bubbles

* T, =800 K: some material mixing due to He-induced pinhole
* T,=1000 K: accumulation of Mo from substrate at the tendri

tip -
Mo film on W ._ A i

* T,=1075 K: accumulation of W from substrate at the tendril

M | Patino et al 2020 Phys. Scr. 2020 014070



Fuzz growth eventually stops at high He fluence

* Data from PISCES, Univ. of Liverpool, NAGDIS at
1024-1028 m-2, 40-80 eV, 1000-1200 K!1]

* Assuming growth is limited by He reaching
the bulk (from the analytical model)

AL fyzz Thuik
_Arbulk Artnp I (Lf'uzz)

dat
— Integrate

— Apply @, = 2.5x10%* m~ at L;,,, = 0.05 pm*, 1/A =2.5x1031 m3  (A:
const dep on T, E,, thermophysical properties)

A. Without ion reflection, Ly,,, is significantly
underpredicted

B. Considering ion reflection, model matches
experimental data
» Fuzz growth consistent with He reaching bulk

l—fuzz: |‘-I m

*0.05 um is lower limit of fuzz thickness measured and limit for validity of volume fill density

10 3

0.1 1

0.01

Patino et al, submitted, 2022

o experiment, [1]
—model (no reflection)
—model (reflection)

0.01

0.1

rrrf 1 1 rrrrror r rrrrrrr

1 10 100

He fluence, 1026 m-
[1] Petty 2015 NF 55 093033



MANY B-PMI effects that influence retention that must

be understood to confidently predict retention in FPP

Mixed materials
Co-deposition
He nanobubbles: can inhibit fuel migration into bulk

Nano-fuzz: Can shield substrate from plasma; modifies matl
properties

Nano & microscale morphology evolution can affect transport of
eroded material into plasma

Displacement Damage w/ Plasma Irradiation: May inhibit defect
annealing



Macroscale transport of eroded material controlled by
nanoscale PMI-driven surface morphology

t~ 101 min

ith cone structures

Smooth Cr Surface in He plasma

15 mm 15 mm
Cr1426.9 nm Cr1426.9 nm

==>> SOL Impurity transport in hours-long plasmas must
connect nano-scale surface w/ macroscale plasmal!




MANY B-PMI effects that influence retention that must

be understood to confidently predict retention in FPP

Mixed materials
Co-deposition
He nanobubbles: can inhibit fuel migration into bulk

Nano-fuzz: Can shield substrate from plasma; modifies matl
properties

Nano & microscale morphology evolution: changes transport of
eroded material in plasma

Displacement Damage w/ Plasma Irradiation: May inhibit defect
annealing



Fission material studies reported synergistic effects, e.g.
different collisional cascade relaxation when He is co-implanted

Peak damage

| 1 |

4 MeV Niion damage on
Ni to 50 dpa at 873 K.
* Co-implanted He
(1000 appm) in the
damage region
* Decreases cavity
volume.
* Increases cavity

CAVITY CONCENTRATION (m~3)
]

. - 150 | e=Ony _No He o
concentration. £ ommame—K,
E 100 ‘—63’ _ , ‘ \\\o =
e Synergism affected § COIMPCANTED ¥ : g
. . . s 50 - =
swelling in a complicated 3 Rl | =
P . -ﬁ" <
manner. Co-implanted He ° M -
e Fusion B-PMI studies are e s %3 14 <15 g "0 02 04 08 08 10 12 14 15 18

DEPTH (jem)

still in their infancy.
y K. Farrell, et al.(1982) Radiation Effects, 62:1-2, 39



DFT calculations show trapped H slows down

annealing of damage

* DFT calculations predict that H in W:
* Produces enhanced vacancy
concentration with H clustered in
the vacancies.
* H clustering can prevent a
vacancy/self-interstitial
recombination.

e Simultaneous displacement damage
may increase fuel retention in fusion
materials...

....depends on Mat’l Temperature!

Fractional abundance

V annealing

1

J i T T T T .
1E-54 -
+VH1—5,6
1E-107 .
] V-1 Recombination ]
1E-15-E / Inhibited by H — +VH_,
1E-20 \ -

: +VH . ]
1E-251] -3 ]
1E-30 4 *VH,,

] Vv ]
1E-354 & O 3

] & S
1E_4D‘-_‘— 1 ﬁr T —— T

1 2 3 4

1000/T (1/K)

D. Kato et al (2015) Nucl. Fusion 55 083019
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Lab-scale PMI expts consistent w/ inhibited annealing
by plasma-implanted D

Damaged 20 MeV W6* Plasma for 3 h 200°C TESSIM modeling
n Damaged 20 MeV W¢* Annealed for 1 h 200°C Plasma for 3 h 200°C TESSIM modeling
Plasma for 2 h 200°C Damaged 20 MeV W6* Plasma for 3 h 200°C

Thermal desorption spectroscopy (TDS)

3 il . \ TESSIM simulation with

reduced SIA recombination
with V by factor 3.5 gives
model agreement with
experiment.

D, Desorption flux (m2s?)
|

Simmonds & Zalonik, in prep 2022

400 500 600 700 800 900 1000

See also Schwartz-Selinger NME 2018, etc...

Desorption temperature (°C)



Main points of this talk

Permanent T retention in plasma-facing materials does not appear to have been
considered in T-handling system models

There is a very low allowable probability of permanent T retention in PFCs while keeping
TBR>1

We need to have high-fidelity, high-confidence predictions of retention for a. credible
FPP design

There are MANY B-PMI effects that influence retention that must be understood &
incorporated in these predictions

These require multi-effect (ion flux, composition & energy; surface
temperature; trace impurities; displacement damage; mech. Stress; heat
flux) B-PMI experiments w/ in-situ & ex-situ diagnostics

New PMI facilities being prepared to permit these multi-effect studies




UCSD-PISCES & ORNL developed new high power helicon
source for PISCES-RF & MPEX B-PMI studies

CAD model



At 20 kW, PISCES-rf produces D, & He plasmas ~10° m=.

profile near target.
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Will integrate 3 MeV accelerator w/ dual ion sources for
simultaneous plasma/displacement damage B-PMI studies

New target PMI chamber
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PISCES Integrating 3 MeV Tandem-ion Accelerator for
simultaneous plasma/displacement damage B-PMI Studies

9SDH-2 3 MV Pelletron for the production of
simultaneous heavy ion damage in the first
several microns of B-PM targets

Baffles between pumping
stages are
1cm @ and 15 cm long

Pressure: 6E-6 mTorr

Pressure 8E-3 mTorr

Pressure: 11 mTorr

Toward PISCES

Toward lon
{—— Plasma Device
—

Accelerator

Magnetic Quadrupole Lens

Pumping Section

Differential pumping section and
magnetic quadrupole focusing lens.



New diagnostics will include:

e LIBS-based In-situ In-operando Dynamic Gas Retention

» 2D Imaging Spectroscopy for In-situ In-operando Sheath/Pre-
sheath & Erosion/Redeposition

* Transient Grating Spectroscopy (TGS) for In-situ In-operando
Thermomechanical Properties

e Diffuse X-ray Scattering to Infer Defect Population & Density
* NRA for depth profiling, RBS for composition

In addition to existing tools: LP’s, Vis. Spectroscopy, Witness Plates
Controlled Impurity Inj., SIMS, AES, SEM/TEM, ....



In-operando LIBS shows dynamic D retention increases with
flux & saturates at high ion flux

7 S §¢F B R

S | : € Dynamic retention is influenced by the sample temperature
85835 513 (348-573 K) and incident ion flux (0.26-2.9x102! m2s?), while it

does not depend on the incident ion energy (45-175 eV).
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2D spectroscopic imaging gives 2D plasma density N, and
temperature T, for sheath/pre-sheath & erosion/redeposition

studies

€ Training data
» Input: He | line ratios

» Desired output:
probe-n,, probe-T,

Machine
learning
(SVM
regression
analysis)

€ Predictive model
» n,=f(Helline ratios)

» T, =f(Helline ratios)
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Transient Grating Spectroscopy (TGS): in-situ real-time
nondestructive thermo-mechanical assessment of PFCs

0.2 :

* Phase Mask Splits Pulsed Laser — Experimertal Data

—Full Fit

01571

* Focused Pulsed Laser Interference Creates Transient
Thermal Wave on Surface

* Probe Beam Measures Propagation & Decay of Surface
Thermal Wave 0
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TGS shows changes in elastic modulus & thermal
diffusivity in ion-beam damaged W samples

Elastic Modulus Thermal Diffusivity
1 Amplitude Spectrum at )\ =3 um- Linear Scale _ | Therma! decay at A =3 um |
— Non-IRRADIATED —— Non-IRRADIATED (displacement only)
0.9 — IRRADIATED - —— IRRADIATED (displacement only)

* Fourier 08 _ o * Decay of
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~3.5x reduction!
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In-operando development on PISCES-RF will provide thermomechanical

near-surface region measurements in a B-PMI conditions
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Diffuse XRD Gives Dislocation Loop Defect Population

Diff. Wavenumber
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Main points of this talk

Permanent T retention in plasma-facing materials does not appear to
have been considered in T-handling system models

There is a very low allowable probability of permanent T retention in
PFCs while keeping TBR>1

We need to have high-fidelity, high-confidence predictions of retention
for a. credible FPP design

There are MANY B-PMI effects that influence retention that must be
understood & incorporated in these predictions

These require multi-effect (ion flux, composition & energy; surface
temperature; trace impurities; displacement damage) B-PMI experiments




Thank you!
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