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Where we have been…and where we need to go….

Kikuchi, Springer-Verlag 2012

Fusion Reactor
Operating Space



Hierarchy of challenges for a pilot plant

• Adequate fusion triple product
• Sustained plasma operations
• Tritium processing
• Tritium breeding
• TBR>1
• Matl’s Degradation
• Power production
• Load following
• Reliability, Availability, Maintenance and Inspectability (RAMI)
• Economic operation

ITER, EAST, etc…
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B-PMI has strong effect on 
these emerging challenges



Main points of this talk
• Permanent T retention in plasma-facing materials does not appear to 

have been considered in T-handling system models
• There is a very low allowable probability of permanent T retention in 

PFCs while keeping TBR>1
• We need to have high-fidelity, high-confidence predictions of retention 

for a. credible FPP design
• There are MANY B-PMI effects that influence retention that must be 

understood & incorporated in these predictions
• These require multi-effect (ion flux, composition & energy; surface 

temperature; trace impurities; displacement damage) B-PMI experiments
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Schematic of Tritium fuel handling

Ref:  Abdou et al, NF 2021



Schematic of Tritium fuel handling models

Ref:  Abdou et al, NF 2021

Fuel cycle modeling
Assumes exponential
Release of trapped
Tritium  Inventory
In First Wall/Divertor
i.e.  

IFW ~ I0 exp(-t/trelease)Unfortunately PMI experiments show small but finite 
permanently trapped T inventory in plasma-exposed 
materials – which has a significant impact on TBR

Focus of this talk



Displacement Damage Increases Fuel Retention in 
Plasma-exposed PFCs

ITER-grade W 300 K damage

Barton, PhD dissertation, UCSD 2016Causey JNM 2002

Retention Increases
w/ Damage & then 
Saturates around 
0.1-1 dpa



This leads to inward diffusion front of deeply trapped 
fuel in FW & PFCs

Wampler & Doerner NF 2009

Ion Beam + PISCES Plasma Exposure

Barton, private comm., 2016

Modeled Trapped D vs Depth for 
Increasing Fluence, 0.1 dpa 110 deg C



Main points of this talk
• Permanent T retention in plasma-facing materials does not appear to 

have been considered in T-handling system models
• There is a very low allowable probability of permanent T 

retention in PFCs while keeping TBR>1
• We need to have high-fidelity, high-confidence predictions of retention 

for a. credible FPP design
• There are MANY B-PMI effects that influence retention that must be 

understood & incorporated in these predictions
• These require multi-effect (ion flux, composition & energy; surface 

temperature; trace impurities; displacement damage) B-PMI experiments
• Linear plasma edge/divertor simulators provide requisite platform 



Global tritium 
particle balance model

Where:
TBR = Tritium breeding ratio
R = Recycling coefficient
pburn = fraction of tritium burned
ηfuel = fueling efficiency

define

and require

In steady state, the rate of T injection
must equal the rate of loss (burned or
trapped in the surrounding material)

The rate of T burned is

The total change in the mass of T is
defined by the TBR

[from G.R. Tynan, PSI Rome 2016, NME 2017]



Particle balance model for 
tritium fuel cycle self-sufficiency

Typically: TBR ~ 1.05, R ~ 0.99-0.999,
pburn ~ 0.05, ηfuel ~ 20-30%

Gives ptrapped ~ 10-6 – 10-7

Where:
TBR = Tritium breeding ratio
R = Recycling coefficient
pburn = fraction of tritium burned
ηfuel = fueling efficiency

ptrapped = trapping probability due to implantation
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But there is a Substantial Retention Increase in Damaged W

Based on data from 
Doerner 2016 Simmonds 2017
Baldwin NF 2011, Shimada NF ‘15
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Will W have acceptable D/T retention for self sufficient 
tritium breeding (TBR >1) after displacement damage? 

• Losses below 1 in 106 T into the first wall, or 
lower, is needed for fusion to be self sufficient in 
breeding T fuel.

• With W PMI (no damage) this can be achieved.
Not so clear with simultaneous damage occurring. 

• Simultaneous displacement damage and plasma 
exposure changes the relaxation cascade 
dynamics

• Vacancies are stabilized.

• No D retention data at high fluence and high dpa.
• Existing D retention data is from sequential 

displacements followed by plasma exposure.

• No data exists for D retention due to 
simultaneous displacement damage and 
plasma exposure. 
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Arrndondo et al NME 2021

Euro-DEMO modeling shows significant B-PMI 
impact on T inventory & time to TBR>1
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Many interlinked aspects to this modeling challenge

• Cross-field and parallel edge/SOL transport modeling
– Turbulent-based transport (BOUT++, etc…) & time-averaged fluid modeling (SOLPS, etc…)

• Wall & Divertor Erosion and Redeposition
– ERO, GITR, DIVIMP, etc….

• Surface & Near-surface Evolution from Plasma Irradiation
– WALDYN, ???

• Bulk Material Evolution due to Neutron Irradiation w/ Transmutation, Defect 
Production & D/T/He retention
– -???

• On FPP-relevant timescales (> hours to days of discharge duration) these processes 
are inter-dependent

• Thus we need interlinked validated models to predict T behavior in FW and PFCs
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B-PMI modifies near-surface zone….which will impact 
retention behavior….

26



MANY B-PMI effects that influence retention that must 
be understood to confidently predict retention in FPP

• Mixed materials
• Co-deposition
• He nanobubbles:  can inhibit fuel migration into bulk
• Nano-fuzz:  Can shield substrate from plasma; modifies matl

properties
• Nano & microscale morphology evolution:  changes transport of 

eroded material in plasma
• Displacement Damage w/ Plasma Irradiation: May inhibit defect 

annealing



Perhaps the most famous plasma created mixed-
material surface comes from TFTR

• Inner bumper limiter tiles showed 
regions of erosion, regions of 
deposition and regions of both 
erosion and deposition (seen here)

• Composition and morphology of 
mixed-material surface was much 
different than the originally 
designed plasma-facing surface 
(dubbed ‘tokamakium’)

• Surface layers consist of C, D, O 
and metals 

• Layer composition changed with 
depth (i.e. with tokamak 
operational conditions)

B. E. Mills et al., J. Nucl. Mater 162-164(1989)343.

Toroidal direction 

Poloidal direction



The complexity of mixed-material formation conditions 
was demonstrated at PISCES 

in the mid 1980s
• During identical Ar plasma 

exposure conditions of SS
– a) Room Temp. surface w/o 

Mo impurities in plasma
– a) 400ºC surface w/o Mo 

impurities in plasma
– a) Room Temp. surface with 

Mo impurities in plasma
– b) 400ºC surface with Mo 

impurities in plasma

• Surface temperature is a key 
variable whose affects may be 
difficult to predict

D. M. Goebel et al., J. Nucl. Mater. 145-147(1987) 61.



JET (Be/C) and ASDEX (W/C) have also observed 
mixed-material formation

M. Rubel et al., J. Nucl. Mater. 313-316(2003)321. H. Maier et al., J. Nucl. Mater. 266-269(1999)1003.
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He or D/He Plasmas Form Near surface He nano-bubbles  in W

[from M. Miyamoto et al., JNM 415(2011)S657]

300ºC 500ºC



These He bubbles act as a diffusion barrier to D
(D-0.25He)  Ts= 473 K, Eion= 50 eV (D2)  Ts= 473 K, Eion= 50 eV, FD+ = 5-8 x1026 m-2

Single step (D, He) exposure

---

(He) Ts= 473 K, Eion= ~30-50 eV
Two step, He pretreat, D plasma exposure

Mixed D2-He compared to pure D2 Low/High flux He prior to D2, compared

[Miyamoto et al.,
NF 49 (2009)]

[Baldwin et al.,
NF (2011).

Bubble network provides ‘return 
pathways’ to PMI surface 

interrupting D migration to bulk.

He
bubbles

No
bubbles



No saturation in D retention up to fluence of 2 x 1028 m-2

• No saturation in D retention in 
W with high-fluence deuterium 
plasma exposure

• 5% He+ flux during deuterium 
plasma exposure drastically 
reduces D retention in W at 
643 K

• Evidence for a reduced 
retention with higher flux, but 
a systematic study is needed

• NEED STUDIES IN HIGH-TEMP 
HIGH FLUENCE DAMAGED 
MAT’LS (NEUTRONS REQ’D)
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He bubbles can (partially) survive rad-damage & 
still reduce D retention

NRA D Profiles Total inventory v dose

Bai et al NF 2018

0.1 dpa
no He Bubbles

0.1 dpa
w/ He Bubbles

0.1 dpa
no He Bubbles

0.1 dpa
w/ He Bubbles
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be understood to confidently predict retention in FPP
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annealing



W Temperature Influences PMI Effects

NAGDIS-II: He plasma
D. Nishijima et al. JNM (2004) 329-333 1029
• Surface morphology 
• Shallow depth
• Micro-scale

PISCES-A: D2-He plasma
M. Miyamoto et al. NF (2009) 065035
600 K, 1000 s, 2.0x1024 He+/m2, 55 eV He+

• Little morphology
• Occasional blisters

    

10nm

(a) Bright field image (under focused image)

PISCES-B: pure He plasma
M.J. Baldwin et al, NF 48 (2008) 035001

1200 K, 4290 s, 2x1026 He+/m2, 25 eV He+

NAGDIS-II: pure He plasma
N. Ohno et al., in IAEA-TM, Vienna, 2006
1250 K, 36000 s, 3.5x1027 He+/m2, 11 eV He+

100 nm (VPS W on C) (TEM) 

~ 600 - 700 K > 2000 K~ 900 – 1900 K

• Surface morphology 
• Evolving surface
• Nano-scale ‘fuzz’



Dissimilar layer expts prove nano-fuzz grows by migration 
of substrate up into tendrils

1. Thin nm W/Mo films deposited on Mo/W substrates
2. Exposure to pure 4He plasma at Ts = 340-1075 K
3. Composition by sputter-AES and TEM/EDX
W film on Mo
• Ts ≤ 750 K: no material mixing & only 2 nm bubbles
• Ts = 800 K: some material mixing due to He-induced pinholes
• Ts = 1000 K: accumulation of Mo from substrate at the tendril 

tip
Mo film on W
• Ts = 1075 K: accumulation of W from substrate at the tendril tip

200 nm

76%

74%

27%
fiber periphery

fiber interior

Mo

200 nm

W

67%

44%

Mo-W, 1075 KW-Mo, 1000 K

M I Patino et al 2020 Phys. Scr. 2020 014070



Fuzz growth eventually stops at high He fluence
• Data from PISCES, Univ. of Liverpool, NAGDIS at 

1024-1028 m-2, 40-80 eV, 1000-1200 K[1]

• Assuming growth is limited by He reaching         
the bulk (from the analytical model)

– Integrate
– Apply Φ0 = 2.5x1024 m-2 at Lfuzz = 0.05 µm*, 1/A = 2.5x1031 m-3        (A: 

const dep on Ts, Ei, thermophysical properties)

A. Without ion reflection, Lfuzz is significantly 
underpredicted

B. Considering ion reflection, model matches         
experimental data
 Fuzz growth consistent with He reaching bulk

* 0.05 µm is lower limit of fuzz thickness measured and limit for validity of volume fill density [1] Petty 2015 NF 55 093033

Patino et al, submitted, 2022



MANY B-PMI effects that influence retention that must 
be understood to confidently predict retention in FPP

• Mixed materials
• Co-deposition
• He nanobubbles:  can inhibit fuel migration into bulk
• Nano-fuzz:  Can shield substrate from plasma; modifies matl

properties
• Nano & microscale morphology evolution can affect transport of 

eroded material into plasma
• Displacement Damage w/ Plasma Irradiation: May inhibit defect 

annealing



Macroscale transport of eroded material controlled by 
nanoscale PMI-driven surface morphology

15 mm

t ~ 1 min

Cr I 426.9 nm

t ~ 101 min

20
20

02
1215 mm

Cr I 426.9 nm 42

500 nm

Smooth Cr Surface in He plasma

Cr surface with cone structures

500 nm

==>> SOL Impurity transport in hours-long plasmas must 
connect nano-scale surface w/ macroscale plasma!



MANY B-PMI effects that influence retention that must 
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• Co-deposition
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eroded material in plasma
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Fission material studies reported synergistic effects, e.g. 
different collisional cascade relaxation when He is co-implanted

K. Farrell, et al.(1982) Radiation Effects, 62:1-2, 39

• 4 MeV Ni ion damage on 
Ni to 50 dpa at 873 K.

• Co-implanted He
(1000 appm) in the 
damage region

• Decreases cavity 
volume.

• Increases cavity 
concentration.

• Synergism affected 
swelling in a complicated 
manner.

• Fusion B-PMI studies are 
still in their infancy.

No He

Co-implanted He

Peak damage

44



DFT calculations show trapped H slows down 
annealing of damage
• DFT calculations predict that H in W:

• Produces enhanced vacancy 
concentration with H clustered in 
the vacancies.

• H clustering can prevent a 
vacancy/self-interstitial 
recombination.

• Simultaneous displacement damage 
may increase fuel retention in fusion 
materials… 

….depends on Mat’l Temperature!
D. Kato et al (2015) Nucl. Fusion 55 083019

40
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12
00
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Material
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Lab-scale PMI expts consistent w/ inhibited annealing 
by plasma-implanted D

Desorption temperature  (oC)

oC

Thermal desorption spectroscopy (TDS)

oC

oC

oC

oC

A

B

C

TESSIM simulation with 
reduced SIA recombination 
with V by factor 3.5 gives 
model agreement with 
experiment.  
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Simmonds & Zalonik, in prep 2022

See also Schwartz-Selinger NME 2018, etc…



Main points of this talk
• Permanent T retention in plasma-facing materials does not appear to have been 

considered in T-handling system models
• There is a very low allowable probability of permanent T retention in PFCs while keeping 

TBR>1
• We need to have high-fidelity, high-confidence predictions of retention for a. credible 

FPP design
• There are MANY B-PMI effects that influence retention that must be understood & 

incorporated in these predictions
• These require multi-effect (ion flux, composition & energy; surface 

temperature; trace impurities; displacement damage; mech. Stress; heat 
flux) B-PMI experiments w/ in-situ & ex-situ diagnostics

• New PMI facilities being prepared to permit these multi-effect studies



CAD model

UCSD-PISCES & ORNL developed new high power helicon 
source for PISCES-RF & MPEX B-PMI studies
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At 20 kW, PISCES-rf produces D2 & He plasmas ~1019 m-3.
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Helicon

New target PMI chamber

Target 
con-focal
laser access

OES

probes

Ion beam

plasma

Target manipulatorBeam
line

Will integrate 3 MeV accelerator w/ dual ion sources for 
simultaneous plasma/displacement damage B-PMI studies



PISCES Integrating 3 MeV Tandem-ion Accelerator for 
simultaneous plasma/displacement damage B-PMI Studies

9SDH-2 3 MV Pelletron for the production of
simultaneous heavy ion damage in the first
several microns of B-PMI targets

Differential pumping section and
magnetic quadrupole focusing lens.



New diagnostics will include:

• LIBS-based In-situ In-operando Dynamic Gas Retention
• 2D Imaging Spectroscopy for In-situ In-operando Sheath/Pre-

sheath & Erosion/Redeposition
• Transient Grating Spectroscopy (TGS) for In-situ In-operando 

Thermomechanical Properties
• Diffuse X-ray Scattering to Infer Defect Population & Density
• NRA for depth profiling, RBS for composition

In addition to existing tools:  LP’s, Vis. Spectroscopy, Witness Plates
Controlled Impurity Inj., SIMS, AES, SEM/TEM, ….



In-operando LIBS shows dynamic D retention increases with 
flux & saturates at high ion flux

D. Nishijima et al NF 2021



2D spectroscopic imaging gives 2D plasma density Ne and 
temperature Te for sheath/pre-sheath & erosion/redeposition 
studies

ML converted HSI - PISCES-A He plasma

Nishijima et al., Review of Scientific Instruments 92, 023505 (2021)

Plasma Density

Electron 
Temperature



Transient Grating Spectroscopy (TGS): in-situ real-time
nondestructive thermo-mechanical assessment of PFCs

Near surface thermal diffusivity & 
elastic modulus from probe beam decay.

• Phase Mask Splits Pulsed Laser
• Focused Pulsed Laser Interference Creates Transient 

Thermal Wave on Surface
• Probe Beam Measures Propagation & Decay of Surface 

Thermal Wave

Dennet & Short, J. Appl. Phys. 123, 215109 (2018)



TGS shows changes in elastic modulus & thermal 
diffusivity in ion-beam damaged W samples

Elastic modulus

Enon-irrad = 420 Gpa
Eirrad = 408 GPa

Thermal diffusivity

αnon-irrad = 70 cm2/s
αirrad = 20 cm2/s

~3.5x reduction !

Elastic Modulus Thermal Diffusivity

In-operando development on PISCES-RF will provide thermomechanical 
near-surface region measurements in a B-PMI conditions

56

• Fourier 
transform of 
the SAW.

• Decay of 
phase grating



Diffuse XRD Gives Dislocation Loop Defect Population

57

Rocking curve 
measurements for 
5.75e-3 dpa SCW

GOAL:  Link atomistic-scale defects w/ retention & 
thermomechanical property evolution

Measured XRD Line Shapes
Diff. Wavenumber

Spectrum Inferred Defect Population.     



Main points of this talk
• Permanent T retention in plasma-facing materials does not appear to 

have been considered in T-handling system models
• There is a very low allowable probability of permanent T retention in 

PFCs while keeping TBR>1
• We need to have high-fidelity, high-confidence predictions of retention 

for a. credible FPP design
• There are MANY B-PMI effects that influence retention that must be 

understood & incorporated in these predictions
• These require multi-effect (ion flux, composition & energy; surface 

temperature; trace impurities; displacement damage) B-PMI experiments



Thank you!
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