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Isotopic Fuel Tailoring as Actuator for Burn Control

Q Kinetic (Burn) Control

What Type of Model Do We Need for Burn-Control Design?

Why a Nonlinear Control Solution is Needed?

Synthesis of Nonlinear Controller for the Regulation the Burn Condition
How Do We Deal With Model Uncertainties and Unmodeled Dynamics?
How Do We Select the Correct Reference for the Controller?

How Do We Close the Loop if State Is Not Fully Measurable?

How Do We Handle Actuator Dynamics and Constraints?
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Burn Control = Density and Temperature Control of All Species

D+3T — 4He + n | QOpr = Amc? = 17.6MeV
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@ Fusion power regulation in DT plasma <> species density/temperature control

@ Dimensionality and nonlinearity of the burning plasma — model-based control
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Actuators Used to Control the Plasma Kinetic Condition

Radio Frequency
Neutral Beam Injection Heating

Heating \
N

- N

Pellet Injection Gas Puffing and

| Pumping

Ohmic Heating

Plasma current contributes to heating through Ohmic heating (small in reactor)
Magnetic configuration affects burn condition through confinement time
Neutral beam injectors and radio frequency waves heat the plasma
Refueling at the plasma boundary is achieved through gas puffing

Refueling in the plasma core is achieved through pellet injection

Impurity injection dilutes the fuel content and increases radiation losses

Gas pumping removes exhausted fuel, alpha particles, and impurities
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Isotopic Fuel Tailoring as Actuator for Burn Control

ﬂ Kinetic (Burn) Control
@ What Type of Model Do We Need for Burn-Control Design?

e Robust Burn Control Against Drift/Biases in Fueling-line Tritium Fractions
e Impact of Fueling-line Tritium Fractions on ITER’s Operational Space

e Summary of the Presentation
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Burning Plasma Model (Dynamics): 1D Conservation Equations

Alpha Particle Density
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Deuterium Density:
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T: Plasma Temperature (T £ T, = T,)
n: Plasma Density

— P Auxiliary Power

P,n: Ohmic Power

P,.,: Radiation Power

Sp, St: Deuterium, Tritium Refueling
SR, SK: Deuterium, Tritium Recycling
Fusion Reaction Rate: S, = npnr{ov)
Reactivity: (ov)

Tw, [p, Ty, T}, T Transport Fluxes

are functions of

Particle Densities and Temperature
time (r) and radial position (p) J
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Burning Plasma Model (Controls): 0D Balance Equations

@ 1D burning plasma dynamic model may be intractable for control synthesis
— Transport models are too complex and still under development

@ Control goal is 0D = 0D response model is what is needed for control synthesis
@ Control synthesis: 0D model — Performance assessment (simulations): 1D model

Plasma Plasma

Energy B Density
—+ Prad
E
Py
dE dn
= =Py + Po + Popm + Poux 7:_Flossj:B+S

dr
@ 0D response model is based on energy/particle balance equations
@ Particle balance equations are needed for all species
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Nonlinear Plasma Response Model for Burn Control Synthesis

Energy:

Alpha particles:
Deuterium:
Tritium:
Impurities:

Quasi-neutrality: n,

Density: n

Temperature: T
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Nonlinear Plasma Response Model for Burn Control Synthesis

dE E —/—=
Energ)ﬁ —=——+ QaSa _Prad + POhm + Paux + PZZ;”
dt TE
P
. dng Ny
Alpha particles: — =—-—+5,
dt Tey
: d in
Deuterium: <2 — — Sy + S+ Sp+ 5
dt TD
- dnT nr o ini
Tritium: — = —— — S, + S+ SV
tiu 7 - +57 +57
. d 5 in . .
Impurities: % =L sp 4 (actuators/disturbances in red/blue)
TI

@ Reaction rate: S, = npny{ov) — S, =7 (1 — ) nh(ov). Tritium fraction: v £ ny/npr, npr = ny + np.
@ The DT reactivity (ov) is a highly nonlinear function of the plasma temperature calculated as

a
(ov) = exp <F +a2+a3T+a4T2+a5T3+a6T4)

E. Schuster (LU Plama Control Group) Isotopic Fuel Tailoring as Actuator for Burn Control IAEA TM Tritium Fuel Cycle - October 11, 2022 6/44



Nonlinear Plasma Response Model for Burn Control Synthesis

Energy:

Alpha particles:
Deuterium:
Tritium:
Impurities:

@ Confinement scaling (IPB98(y,2)): 7z =0.0562H (I~ “") 1938} 15 P=0-69n041 p0-1R1-970-58 ;0,78
@ Particle confinement assumed proportional to 7z, i.e. 7, =k, 1z, o =kpTE, Tr =kiTE, TI =K/ TE.

P
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@ Impurity sputtering source: S}"=/," (% +i1) O<fP<<1)=n=f"n (y=n+nP).
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Nonlinear Plasma Response Model for Burn Control Synthesis

Po

Energy:

Alpha particles:
Deuterium:
Tritium:

Impurities:

dE E —/=
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dt TE
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@ Fuel recycling is included in the model through nonlinear functions Sj3¢ and S of the states.
@ P,.4, Ponn are also highly nonlinear functions of the states (and external variables like I).

@ P..., Sp represent effect of actuators (NBI, RF H&CD) under other competing controllers.

@ phum s s s are the actuators available for burn control.

aux
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Nonlinear Plasma Response Model for Burn Control Synthesis
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TEhrenberg J. 1996 Physical Processes of the Interaction of Fusion Plasmas with Solids (New York: Academic)
[1] M.D. Boyer and E. Schuster, Nuclear Fusion 55 (2015) 083021 (24pp).
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Isotopic Fuel Tailoring as Actuator for Burn Control

ﬂ Kinetic (Burn) Control

@ Why a Nonlinear Control Solution is Needed?

e Robust Burn Control Against Drift/Biases in Fueling-line Tritium Fractions
e Impact of Fueling-line Tritium Fractions on ITER’s Operational Space

e Summary of the Presentation
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Burn Control Challenges
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@ Potential for thermal instability — excursions and quenching:

nkT
BZ
20

Pr =npnr < ov > Qpr x B’B*, B

@ Even when operating at stable equilibria, system performance during transients and
plasma response to disturbances could be undesirable without active control.
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Burn Control Needs and Objectives

@ Burn condition demands effective feedback control scheme to avoid:
— Undesirable transient performance due to nonlinear/coupled dynamics
— Perturbations due to plasma changes (confinement, impurity content)
— Potentially disruptive plasma conditions due to thermal instabilities
@ Nonlinear coupling with other control problems and objectives is severe
— Confinement: PF coils (shape, current), Non-axisymmetric coils (RWM/ELM)
— Heating/Density: Non-inductive heating & current drive (g-profile, NTM)
@ Wall heat/particle load tolerance may impose constraints on core burn regulation
— Requires controller that can effectively change operating conditions (Q, Py, etc.)

@ Capability of controller designed based on linearized model:
v Regulation around a desired burning equilibrium point
x Drive plasma from one operating point to another (Modify O or Py)
x Access to and exit from the burning plasma mode
x Handle nonlinear coupling with other competing controllers
@ Reactor-specific additional challenges for effective burn control:
— P, >> P..: control by heating may not be effective
— Wall recycling effects may also make control by fueling not effective
— Limited and noisy set of diagnostics
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Burn Control Solution: Overview of Proposed Approach

Actuation Measurements
Plasma >

Parameter Estimates

State Estimates

Controller References

<€

Online
timization

Performance Metrics Constraints
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Isotopic Fuel Tailoring as Actuator for Burn Control

ﬂ Kinetic (Burn) Control

@ Synthesis of Nonlinear Controller for the Regulation the Burn Condition

e Robust Burn Control Against Drift/Biases in Fueling-line Tritium Fractions
e Impact of Fueling-line Tritium Fractions on ITER’s Operational Space

e Summary of the Presentation
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Stage 1: Synthesis of Nonlinear Feedback Controller

Actuation Measurements
Plasma >

@ Nonlinear dynamics
@ Multiple inputs and outpus
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Stage 1: Synthesis of Nonlinear Feedback Controller

Actuation Measurements

g Plasma

ariable
ar Control

Controller References

@ Nonlinear dynamics
@ Multiple inputs and outpus
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Stage 1: Synthesis of Nonlinear Feedback Controller

onlinear Control

State Isotopic Fuel Tailoring | L
Measurements 1 Actuation
—) Deuterium Fueling >

v

Tritium Fueling
/

v

Auxiliary Heating
State
References

v

Magnetics (7))

v

Impurity Injection

@ The approach embeds whole nonlinear dynamics of burning plasma in
controller by avoiding linearization of the model around operating point.
— Preserving nonlinear dynamics is key to achieve controller’s goals.
@ The approach uses combination of actuators (SISO — MIMO).
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Stage 1: Synthesis of Nonlinear Feedback Controller

Isotopic Fuel Tailoring

@ Alpha power depends on tritium fraction 0.25
Pa = npn(av)Qa =7 (1 =7y (0v) Qa
where npr 2 nr +np and v = ny/npr. ?0.15—

@ The function ~ (1 — ) achieves its maximum of 0.25 at =
~ = 0.5 and decreases steeply for smaller/larger ~’s.

@ Fueling system in ITER (gass puffing (D) and pellet 0.05f

injection (D + DT)) will allow fuel mix regulation.

@ Diagnostics for measuring the tritium ratio in both the
edge and core plasma should be available in real time.

@ Feedback control of the tritium ratio in ITER plasmas
through isotopic fuel tailoring should be feasible.

@ Effectiveness may be limited due to particle recycling.
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Stage 1: Synthesis of Nonlinear Feedback Controller

No unique approach (depends on actuators and goals) but usually leads to tandem approach:
Step 1: Calculate value of P2 that stabilizes E” subject to saturation.

aux
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Stage 1: Synthesis of Nonlinear Feedback Controller

No unique approach (depends on actuators and goals) but usually leads to tandem approach:
Step 1: Calculate value of P2 that stabilizes E" subject to saturation.

aux

Step 2: Calculate stabilizing values of tritium fraction, v*, and/or energy confinement, 7.
@ If the auxiliary power was not saturated, then v* = ~" and 75 = 77/,
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Stage 1: Synthesis of Nonlinear Feedback Controller

No unique approach (depends on actuators and goals) but usually leads to tandem approach:
Step 1: Calculate value of P2 that stabilizes E" subject to saturation.

aux

Step 2: Calculate stabilizing values of tritium fraction, v*, and/or energy confinement, 7.
@ If the auxiliary power was not saturated, then v* = ~" and 75 = 77/,

Step 3: Calculate value of non-axisymmetric magnetic fields to track 7;.
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Stage 1: Synthesis of Nonlinear Feedback Controller

No unique approach (depends on actuators and goals) but usually leads to tandem approach:
Step 1: Calculate value of P2 that stabilizes E" subject to saturation.

aux

Step 2: Calculate stabilizing values of tritium fraction, v*, and/or energy confinement, 7.
@ If the auxiliary power was not saturated, then v* = ~" and 75 = 77/,

Step 3: Calculate value of non-axisymmetric magnetic fields to track 7;.

Step 4: Calculate fuel injection rates that stabilize v* and »n” subject to saturation.
@ If fueling rates saturate, v* may not be tracked and an excursion could occur.
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Stage 1: Synthesis of Nonlinear Feedback Controller

No unique approach (depends on actuators and goals) but usually leads to tandem approach:
Step 1: Calculate value of P2 that stabilizes E" subject to saturation.

Step 2: Calculate stabilizing values of tritium fraction, v*, and/or energy confinement, 7.
@ If the auxiliary power was not saturated, then v* = ~" and 75 = 77/,
Step 3: Calculate value of non-axisymmetric magnetic fields to track 7;.

Step 4: Calculate fuel injection rates that stabilize v* and »n” subject to saturation.
@ If fueling rates saturate, v* may not be tracked and an excursion could occur.

Step 5: If phun = (pburmymax " — rmar gnd 4* cannot be tracked — thermal quench.

aux

@ Change magnetic plasma parameters to improve energy confinement.
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Stage 1: Synthesis of Nonlinear Feedback Controller

No unique approach (depends on actuators and goals) but usually leads to tandem approach:
Step 1: Calculate value of P2 that stabilizes E" subject to saturation.

aux

Step 2: Calculate stabilizing values of tritium fraction, v*, and/or energy confinement, 7.
@ If the auxiliary power was not saturated, then v* = ~" and 75 = 77/,

Step 3: Calculate value of non-axisymmetric magnetic fields to track 7;.

Step 4: Calculate fuel injection rates that stabilize v* and »n” subject to saturation.
@ If fueling rates saturate, v* may not be tracked and an excursion could occur.

Step 5: If phum — (pburmymax ‘v — rmax gnd 4* cannot be tracked — thermal quench.
@ Change magnetic plasma parameters to improve energy confinement.

Step 6: If phum — (pburmymin - x — rmin and ~* cannot be tracked — thermal excursion.
@ Calculate a stabilizing value of impurity density, »;, and the fueling/impurity
injection rates needed to track n;, v* and n’.
[1] E. Schuster, M. Krstic and G. Tynan, Fusion Engineering and Design, 63-64, pp. 569-575, 2002.
[2] E. Schuster, M. Krstic and G. Tynan, Fusion Science and Technology, vol. 43, no. 1, 2003.

[3] M.D. Boyer and E. Schuster, Nuclear Fusion 55 (2015) 083021 (24pp).
[4] A. Pajares and E. Schuster, Fusion Engineering and Design 123 (2017) 607—-611.
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Potential of Nonlinear Control: Burn Performance
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4 T T T T
-~ Linear Pole Placement
—— Linear Robust
3.5 o Nonlinear
5 x  Equilibrium
b Limit
3
s u=ax)
5 .
onlinear
T ]
E 2
= \ e, /
1.5 N u = Kx
1 L e | -near
0.5
0 o o
0 2 4 6 8 10 12 14 16
T [keV]

@ Comparative study is carried out generating initial perturbations around the equilibrium for T
and n, keeping f, = n,/n. constant.

@ While the boundaries shown for the linear controllers are absolute, for the nonlinear controller
they only indicate the test limits.

@ Embedding nonlinear dynamics in control synthesis — higher levels of performance!
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Potential of Nonlinear Control: Burn Robustness

Stability Domain
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@ Comparative study is carried out generating initial perturbations around the equilibrium for 7.

@ While the boundaries shown for the linear controllers are absolute, for the nonlinear controller
they only indicate the test limits.

@ Embedding nonlinear dynamics in control synthesis — higher levels of robustness!
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Isotopic Fuel Tailoring as Actuator for Burn Control

ﬂ Kinetic (Burn) Control

@ How Do We Deal With Model Uncertainties and Unmodeled Dynamics?

e Robust Burn Control Against Drift/Biases in Fueling-line Tritium Fractions
e Impact of Fueling-line Tritium Fractions on ITER’s Operational Space

e Summary of the Presentation
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Adding Robustness to Controller by Specific Design Techniques

How Do We Handle Uncertainties and Time-variations In Control-oriented Models?

@ One of the main characteristic of feedback is its ability to deal with model uncertainties:
— Poorly understood and/or unmodeled dynamics in response models
@ Moreover, there are specific tools within the body of mathematical theory of control to
specifically deal with model uncertainties:

— Adaptive Control
— Robust Control
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Adding Robustness to Controller by Specific Design Techniques

How Do We Handle Uncertainties and Time-variations In Control-oriented Models?

@ One of the main characteristic of feedback is its ability to deal with model uncertainties:
— Poorly understood and/or unmodeled dynamics in response models
@ Moreover, there are specific tools within the body of mathematical theory of control to
specifically deal with model uncertainties:

— Adaptive Control
— Robust Control
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Stage 2: Adaptation by Real-time Estimation of Model Parameters

variable
ar Control

Controller References

Actuation Measurements

g Plasma

@ Many of the burning plasma model parameters may be uncertain (highlighted in orange).
@ The control algorithm must make use of estimated model parameters.
@ Adaptive control is proposed to ensure tracking despite uncertainty.
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Stage 2: Adaptation by Real-time Estimation of Model Parameters

Actuation Measurements
Plasma

Parameter
Estimation

Parameter Estimates

Controller References

@ Many of the burning plasma model parameters may be uncertain (highlighted in orange).
@ The control algorithm must make use of estimated model parameters.
@ Adaptive control is proposed to ensure tracking despite uncertainty.
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Stage 2: Adaptation by Real-time Estimation of Model Parameters

We define a system observer as

Parameter
<

+ 5 Measurements
Observer r ""- ol

1

1

Parameter J

Update Law
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. ~ E
E{)b:_el:+Po¢_Prad+Paux+P0hm—KZ~b (E()b — E)
E

Actuation

~Nn
-ob__ ¢4 ob ob
R, __02_7E + Sa—KZ (n? — na)

. ob 5 D 5 Nt inj ob (. ob
np =—03— + 04— — S, + SD —K;) (n;) — n[))
TE TE

r----

~n ~n ..
.ob__ D T inj ob (. ob
nr —95— — 96— — Sa + ST _KT (}’ZT — l’lT)
TE TE lParameter Estimates
. 5 T inj
n?b=—977— + 87+ SP K] (n” —ny)
E

The dynamics of the error § = 6 — d can be asymptotically stabilized by taking

i3 1 - T
_ ~ ol b ~ob ~ ol ~ob ~ob ~ob
0= 77’5 [ n¥’ne E°E nynp —npyny —nPnp nfnr ni'ng } , >0
where
~ob __ _ob ob __ rob ~ob __ _ob ~ob __ _ob ~ob __ _ob
ng, =n, —na,E” =E” —E,n;” =n;” —nj,npy =np —np,ny = np — nr.

[1] M.D. Boyer and E. Schuster, Plasma Physics and Controlled Fusion 56 104004 (2014).
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Isotopic Fuel Tailoring as Actuator for Burn Control

ﬂ Kinetic (Burn) Control

@ How Do We Select the Correct Reference for the Controller?

e Robust Burn Control Against Drift/Biases in Fueling-line Tritium Fractions
e Impact of Fueling-line Tritium Fractions on ITER’s Operational Space

e Summary of the Presentation
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Stage 3: Reference Governor by Real-time Optimization

Actuation Measurements
Plasma

Parameter
Estimation

Parameter Estimates

Controller References

@ Part of burn control problem is selection of controller references.
@ References must be chosen to optimize figure of merit for performance.
@ Convex optimization is proposed to ensure optimal reference selection.
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Stage 3: Reference Governor by Real-time Optimization

Actuation - Measurements
> Plasma

Parameter Estimates

Controller References Online
timization
-
A
Performance Metrics Constraints

—

rator Input
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Stage 3: Reference Governor by Real-time Optimization

constraints

weight 5 Weight 2 weight 2
w w fv/v\ 1 &
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J= — |- + P, — P + - —— In(—g).
> I > o — Py - i w2 (—&i)
target target target =l

[ l Model Parameter Estimates

@ Areference for the controlled states
r=[E",n",~"]" determines burn condition.

@ Tdes, ples ~des gre desired targets.
@ wr, wp,, w, are tracking weights.
@ Constraints by barrier function

Online Optimization

Measurements

;
w=[ o, m

Controller References

7 such that ﬂao
ar

Performance Metrics and Constraints

gi<E7n7’77na7n1) <0 J(”“'é)
L . . . .. 1 roIN\T oy .
@ Optimization is achieved by defining v, = § (%)" 2/ and choosing
P=— @ B g+ﬂx+ 82Jé :>V<O:Q—>O:>r—>r*
N or? RO " orox™ " arof "= or
@ The cost function is user-defined! More sophisticated optimization problems are possible!

[1] M.D. Boyer and E. Schuster, Plasma Physics and Controlled Fusion 56 104004 (2014).
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Changing Operating Points via Real-time Optimization

@ Conditions: " = 0.5 is kept constant in this simulation and w.,, = 0

Optimization weights: wy = 0.1 and wp_ = 1.

References for fusion heating and temperature modified twice (at + = 60s and ¢ = 120s)
Constraints: 53MW < P,,. < 73MW

Recycling: 7F7€ = 0.5, f,p = 0.3, frer = 0.5, Rey = 0.95 = poor ~ control

Simulation conditions chosen to ensure impurity injection is needed
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Changing Operating Points via Real-time Optimization
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Changing Operating Points via Real-time Optimization
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Tritium fraction was reduced
in response to saturation of
auxiliary power.
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Fusion Heating (MW)
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Changing Operating Points via Real-time Optimization
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Isotopic Fuel Tailoring as Actuator for Burn Control

ﬂ Kinetic (Burn) Control

@ How Do We Close the Loop if State Is Not Fully Measurable?

e Robust Burn Control Against Drift/Biases in Fueling-line Tritium Fractions
e Impact of Fueling-line Tritium Fractions on ITER’s Operational Space

e Summary of the Presentation
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Stage 4: State Estimation by Observer From Noisy/Limited Data

Actuation N Measurements

‘g Plasma

|

Parameter
Estimation

i
w

Parameter Estimates

y
line
ptimization

Controller References

PI——S

N

Performance Metrics Constraints

@ Plasma state needed for control @ Lower quality (e.g., noise, drifts,
may not be fully measurable. biases, etc.) of diagnostics.

@ Limited number of diagnostics. @ Critical issue in fusion reactors!

erator Input

|
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Stage 4: State Estimation by Observer From Noisy/Limited Data

ariable Actuation
r Control
N

Measurements

\

Parameter

i

Estimation

Parameter Estimates

y

State Estimates

Controller References line <&
ization
N
Performance Metrics Constraints

@ Plasma state needed for control @ Lower quality (e.g., noise, drifts,
may not be fully measurable. biases, etc.) of diagnostics.

@ Limited number of diagnostics. @ Critical issue in fusion reactors!
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Stage 4: State Estimation by Observer From Noisy/Limited Data

We define an observer as

o

5 ~ F
E:_GIF‘I_P(J_Pmd‘{'POhm"’ +LE5
E

Measurements

Output Estimate 4 &
------ State Estimates
_______ —_—,—

s N ;loz
No = _GZT"'SQ +La,
TE

Actuation

3 ~ Ap A AT
nD=—937+947§—5a+ +Lp,

Estimation|
T E Error |
: N ;lD R ;ZT Parameter Estimates Proportional-Integral I
nr= 05 e 06 i Sa + +LT, Output Feedback
TE TE

. P
n1=—97—slc+55p+ +1Ly,
TE

@ We consider a general nonlinear output map y = h(ng, E, n;, np, nr).
@ The system is augmented with an additional state, z, governed by z =y — y = .
@ Lyapunov analysis — injection terms Lg, L, Lp, Ly, L; adopt a proportional-integral form.

[1] M. D. Boyer, E. Schuster, International Federation of Automatic Control World Congress (2014).
E. Schuster (LU Plama Control Group)
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Isotopic Fuel Tailoring as Actuator for Burn Control

ﬂ Kinetic (Burn) Control

@ How Do We Handle Actuator Dynamics and Constraints?
e Robust Burn Control Against Drift/Biases in Fueling-line Tritium Fractions
e Impact of Fueling-line Tritium Fractions on ITER’s Operational Space

e Summary of the Presentation
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Stage 5: Optimal Allocation of Actuators with Dynamics

@ Two-temperature model (7; # T,). Heating and fueling as actuation.
@ Virtual control inputs «+ Effector System « Physical control inputs.

- NBI thermalization delay

- Pellet fueling efficiency

State-dependent

- Uneven ion/electron NBI power deposition W:> time-varying
uncertainties

- Tritium fractions in fueling lines

- Heating and fueling efficiency factors

Actuator
Dynamics and
Constraints

l

Targets

Diagnostics

P, aux,e

Paux,i
Sp

St

Model
Uncertainties

ptimal Actuator
cation Algorithm

+

w-level Actuator
ntrol Algorithm

i

Pic

Pnbil

Pnpiz

_4

[1] V. Graber and E. Schuster, Nuclear Fusion 62 (2022) 026016 (18pp).
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Stage 5: Optimal Allocation of Actuators with Dynamics

The Effector System maps the control efforts v to the actuator efforts u:
V= [Paux,i Paux,e SD ST]T S u= [Pic Pec Pnbil Pnbiz SDW/ SDT,,L,, SDTgM]T

Paux,i: Nic Pic+'/n/m d)nbiPnbil +'/n/7/’3 ¢nbipnbi2
Pau.x,e = Tec Pec+//////u ¢nbiPnbi1 +’////u«¢nbiPnbi2 (Where anbi:l - ()anbi)

Posi Posi
SD = //H/)/\ ﬂ aF I/H/)/; # +77pel| SDpel +77pelz( 1_ 8 /u’/)SDTpel+ Ngas (1_ g L'u\)SDTgaS

nbiy nbiy

Uncertain
ST = Mpel, /e /SDTpe, = MNoas™ ngDTgm Parameters

@ lon cyclotron, electron cyclotron & NBI heating: Pic, P.c; Pupi,s Pubi,
@ DT pellet & gas injection with Tritium fractions ./ & ...: Sp,..» Sp7,0s SDT,
o Efficiency factors: 1., 1cc, 1ubi,s Nubiss Mpelrs Mpels Teas
@ Pellet fueling efficiency decreases with increasing plasma energy: 7., = p,..(1—E/Ey), i € {1,2}
@ The NBI ion-heating fraction ¢, = p...¢},; contains uncertainty (p,.;).
@ NBI thermalization de;lay contains uncertainty: p,,
Tlug: )“T*-:—')“‘iln (%)3/2+(;TL}0)3/2 (6 i =T')
nbi — P Tubi f '3B H'(ejTL}O)S/z nbiy, i
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Isotopic Fuel Tailoring as Actuator for Burn Control

e Robust Burn Control Against Drift/Biases in Fueling-line Tritium Fractions
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Unmeasurable DT Content in Fueling Lines May Vary Over Time

@ Two fueling lines will be available in ITER:
@ D injector (Si"): pellets of approximately
100% D
© DT injector (Si¥): pellets of approximately
10% D-90% T

@ These nominal concentrations in the fueling
. . . Deuterium
lines may not be sustained over long discharges Sy

@ Moreover, drifts and biases in the tritium :
fractions would not be measurable in real time ‘1

@ Can we make the burn controller robust against
these unmeasurable drifts and biases?

o
Tritium
Supply

E. Schuster (LU Plama Control Group) Isotopic Fuel Tailoring as Actuator for Burn Control

DT Fuel
Supply

He Purge Gas
+ Tritium fron
Blanket

Clean-up and DT
Fuel Recove

“Se Helium to Stack
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Adding Robustness to Controller by Specific Design Techniques

How Do We Handle Uncertainties and Time-variations In Control-oriented Models?

@ One of the main characteristic of feedback is its ability to deal with model uncertainties:
— Poorly understood and/or unmodeled dynamics in response models
@ Moreover, there are specific tools within the body of mathematical theory of control to
specifically deal with model uncertainties:

— Adaptive Control
— Robust Control
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Adding Robustness to Controller by Specific Design Techniques

How Do We Handle Uncertainties and Time-variations In Control-oriented Models?

@ One of the main characteristic of feedback is its ability to deal with model uncertainties:
— Poorly understood and/or unmodeled dynamics in response models
@ Moreover, there are specific tools within the body of mathematical theory of control to
specifically deal with model uncertainties:

— Adaptive Control
— Robust Control
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Burn Control Scheme: Overview of Proposed Approach

Actuation Measurements
Plasma >

Parameter Estimates

State Estimates

Controller References

<€

Online
timization

Performance Metrics Constraints
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Burn Control Scheme: Overview of Robust Proposed Approach

ivariable Actuation A Measurements
asma
ear Control g

Robustification

Parameter
Estimation

Al

Parameter Estimates

\

}‘

State Estimates

Controller References Online <
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Performance Metrics Constraints

|

erator Input

!
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Robustness Against Drifts and Biases in Fueling Concentrations

@ Injection rates for D and T can be written as
Sp = (1= r)SEi + (1= )Sp*
S”U ’VDTS]DMZE + ,YDSIML
— 9or € [0,1], vp € [0, 1] characterize the tritium concentration in the DT and D fueling lines.
@ In the nominal case, vpr = 77" = 0.9 and yp = y5’" = 0.
@ Unknown variations over time in the tritium fractions are modeled as
Yor =Ypr +pr, Yo =7p" + b, (1)
— oOpr and op are “model uncertainties” in the tritium fractions.

@ From definition, 6p7 € [—0.9,0.1], dp € [0, 1] = bounded uncertainties.

[1] A. Pajares, E. Schuster, Nuclear Fusion 59 (2019) 096023 (18pp).
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Robustness Against Drifts and Biases in Fueling Concentrations

@ Controller tries to regulate the system around a nominal equilibrium point defined by
T=12keV,7y=04and By =1.5

@ The system starts from a perturbed initial condition of +5% in E.

@ Initial biases and time drifts in vpy and ~yp are simulated (not known by controller).

0.9
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0.7 4

——7b-line

= 05+ ="~ "D T-line|-

o ©
w >
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Robustness Against Drifts and Biases in Fueling Concentrations
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Robustness Against Drifts and Biases in Fueling Concentratio
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Isotopic Fuel Tailoring as Actuator for Burn Control

e Impact of Fueling-line Tritium Fractions on ITER’s Operational Space
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Coupling Two-Chamber Model and Two-Point Model — CSD Model

Power Entering SOL -

- 4 = ENergy/Density

Upstream /[ ®

[ | Balance Equations < Auxiliary Heating
Point @ /\ Core
Separatrix Density ‘ Chamber ‘
Pellet Injection
\ y
Two-Point Separatrix Temperature
Model Particle
Transport
Power & Momentum
Downstream Losses Near Divertor Neutral-particle Gas Puffing
Point N / Balance Equations h
<€ Divertor
Target Conditions: e Particle Recycling Chamber Pumping
Heat Load
Temperature

Particle Flux Impurity Sputtering

[1] V. Graber and E. Schuster, Fusion Engineering and Design 171 (2021) 112516.
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Core Chamber: Radial Temperature & Density Profiles

Peaked Electron and lon Temperature Profiles 40

Te(t’ w) = (Te,O - Tu)(l - 1/}/1:00)2 + Tu

30

Ti(t, %) = (Tio — Tu)(1 — ¥ /1p0)* + T

Central lon Temperature: 1 o T

Central Electron Temperature: Tg,o (keV) 20

Upstream Separatrix Temperature: Tu (10129m_3)

Flat Density Profiles

ne(ta /(/)) =Ne0 = Ny 10

Central Electron Density: le,0

Upstream Separatrix Density: 7y

Radial profiles couple core conditions (7} / ny) (N P=0 Yo
with conditions at the separatrix (7, / n,)

toroidal magnetic flux coordinate
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Two-Point Model: Straightening Out the SOL Plasma

@ Relates upstream (separatrix) and downstream (target) conditions'
@ Upstream: density n,, temperature T,, parallel power flux density ¢
@ Downstream: density n,, temperature T,

Two Point Model Equations:

4 4 7 feonaq ) L
20,1 = fnomnuTu, I =17 + 2 ro (1 _f}mw)qH = YstuTiCs

The Two-Point Model can be solved in terms of the electron density and power entering the
SOL which are controllable with core-plasma actuators (pellet injection and auxiliary power).

____'u"here
= or

 P.C. Stangeby, “The Plasma Boundary of Magnetic Fusion Devices,” loP Publishing, 2000

'u' here
or heat enters here
Private Main plasma
Plasma | heat enters SOL —
e —
Target | X-point upstream
't Divertor } Main . B u
soL | soL ﬂ/
JG98 43612
e
Wall

cross section

Ay
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POPCON (Plasma OPeration CONtour) Analysis

Generating POPCONSs:

First, the Core-SOL-Divertor Model is
solved in steady-state.

Then, operational constraints and plasma

conditions can be plotted in
temperature-density space.

Correction Factors for SOL.:

@ Conduction factor f.,,a = 1 models inclusion
of convection.

@ Momentum loss factor f,,,, = 0.4 models
frictional collisions with neutrals.

@ Power loss factor f,,,, = 0.8 models radiation

losses below the X-point.

E. Schuster (LU Plama Control Group)

Isotopic Fuel Tailoring as Actuator for Burn Control

ITER Operational Constraints:

@ External Fueling Saturation
@ 100% D Pellet Injector
@ 90%T-10%D Pellet Injector
e Tritium concentration in fueling lines can fall
during long pulses

@ Auxiliary Heating Saturation

o Neutral beam injection
o Radio frequency heating

@ Power Threshold for H-mode
o Total power must exceed threshold power

@ Maximum Divertor Heat Load
e Maximum: 10 MW/m?

@ Divertor Detachment (7, < 7eV)
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POPCON: ITER Plasma With Significant DT Recycling
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0.5
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POPCON: ITER Plasma Without Any DT Recycling
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—
Fusion Power (MW)

All Constraints Satisfied
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Isotopic Fuel Tailoring as Actuator for Burn Control

e Summary of the Presentation
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Isotopic Fueling Can Play Key Role in Burn-Control Schemes

@ Burn-control solution: feedback controller, state observer, actuator allocator, reference governor.
— Control techniques are available to incorporate nonlinear dynamics into the design — Performance
— Adaptive & robust control techniques are available fo deal with model uncertainties — Robustness 1
Burn control by fueling becomes critical when control by heating becomes ineffective.
— Density control by fueling is constrained by efficiency of actuators (gas puffing, pellet injection)

@ Burn control designs can effectively incorporate isotopic fueling as an “actuator.”
@ Control by (isotopic) fueling may lose effectiveness as particle recycling increases.
@ Burn controllers can be robustified against tritium-concentration drifts in fueling lines.
@ Tritium fraction in fueling lines could impose limits on operational space in low recycling
scenarios but drops of tritium fraction below nominal values are expected to be small.

@ Testing of proposed density—burn-control algorithms in 1D simulations is needed.

— Further work on actuator/diagnostic/transport modeling is needed

— Need for multi-zone response model for control synthesis could be determined from simulation results
@ Testing of proposed density—burn-control algorithms in present devices is needed.

— Emulation of a heating, and even particle recycling, is possible through different mechanisms.
— Emulation of ITER’s actuators and diagnostics is also possible.
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