4th Technical Meeting on Divertor Concepts

Radiative divertor compatible with RMP-driven, ELM-crashsuppression in fusion DEMO-type devices

Yongkyoon In¹, H.H. Lee², and S.J. Kwon²

in acknowledgement of the dedicated efforts of the KSTAR team

¹ Ulsan National Institute of Science and Technology (UNIST), Korea ² Korea Institute of Fusion Energy (KFE), Korea

Recently established radiative divertor under RMP-driven, ELM-crash-suppression in KSTAR suggests a promising venue for detached plasmas in fusion DEMO reactor

ITER-like 3-row Resonant Magnetic Perturbation (RMP)-driven ELM-crash-suppression

Demonstrated the co-existence of RMP-driven ELM-crash-suppression and radiative divertor

KSTAR

Y. In/TM_DivCon2022

2

UCIST

When RMP-driven ELM control becomes successful, the accompanying divertor thermal loading should be sufficiently low in reactor

- During RMP-driven ELM-crashsuppression, the divertor heat flux peaks are observed to be 2-3 times higher than that of inter-ELMs without RMP (based on KSTAR)
 - Broadening or Lowering the peaks
- Essential to find a solution to lower divertor thermal loading even during RMP ELM control
- high n_e, detached plasma (preferably), impurity injection

ITER Physics Basis Editors et al, NF 39 (1999) 2137

KŚTAR

Field-line-tracing, including plasma response, has been matched quite well with diagnosed divertor heat flux striation

Divertor Gas Control

Impurity seedingdeuterium gas puffing

Typically, poor compatibility of detachment with RMP-dri ven ELM-crash-suppression had been observed for years

KŚTAR

Contents

RMP-driven, ELM control

- Stochastic magnetic boundary/Decoupling core mode-locking and edge RMP
- Secured accessibility for ELM-crash-suppression with the cost of the substantial increase of divertor heat flux peaks

ITER or reactor-relevant issues

- a) Divertor heat flux broadening
- b) Lowering the peaks under RMP-driven, ELM-controlled periods via enhanced radiative loss at edge and SOL
- c) Caveats (could be quite narrow range of operational conditions)

Reactor-oriented R&D needs

In fusion reactor, edge conditions belong to banana regime for both ions and electrons, suggesting low collisionality and high density plasmas

type I ELM suppression

Collisionality

- $v* = \frac{\text{connection length}}{\text{trapped particle mean free path}}$
 - = <u>effective collision frequency</u> bounce frequency of trappped particle

=
$$(v/\epsilon) / \omega_b$$
 = $(v/\epsilon) / \epsilon^{1/2} v_t (Rq)$

$$= v Rq / (\varepsilon^{3/2} v_t)$$

$$\propto \frac{q R n_e Z_{eff} \ln \Lambda_e}{T_e^2 \epsilon^{3/2}}$$

High edge n_e without accessing ITER-grade low v*remains challenging (e.g. loss of ELM-crashsuppression), enhancing the radiative power loss

In fusion reactor, edge conditions belong to banana regime for both ions and electrons, suggesting low collisionality and high density plasmas

Collisionality

- $v* = \frac{\text{connection length}}{\text{trapped particle mean free path}}$
 - = effective collision frequency bounce frequency of trappped particle

=
$$(v/\epsilon) / \omega_b$$
 = $(v/\epsilon) / \epsilon^{1/2} v_t (Rq)$

$$= v Rq / (\varepsilon^{3/2} v_t)$$

$$\propto \frac{q R n_e Z_{eff} \ln \Lambda_e}{T_e^2 \epsilon^{3/2}}$$

High edge n_e without accessing ITER-grade low v*remains challenging (e.g. loss of ELM-crashsuppression), enhancing the radiative power loss

KSTAR

Y. In/TM_DivCon2022

ITER-like 3-row ELM-crash-suppression, rather than 2-row RMPs would be more desirable in terms of divertor thermal loading, in particular, with impurity <u>control</u>

Divertor thermal loading helps us decide the most favorable RMP-driven, ELM-crash-suppression

Y. In/TM_DivCon2022

Y. In et al, Plenary talk at AAPPS-DPP (2021) 8

With N₂ + diffusive D₂ gas puff, the divertor thermal loading gets lowered to a manageable level (below 1MW/m²) with 3-row RMPs UTINGT

RMP + N_2 +diffusive D_2 gas

RMP only

Y. In et al, Plenary talk at AAPPS-DPP (2021)

Established an exemplary case to combine RMP-driven, ELM-control and divertor thermal loading control simultaneously !

KSTAR

Radiatively controlled divertor is prone to re-attachment under RMP ELM-crash-suppression

RMP + N₂ + diffusive D₂ gas

10

Divertor thermal loading during RMP, ELM control has been favorably controlled with impurity and diffusive gas puffing

<u>3-row RMP ELM suppression</u> would be more favorable in terms of peaked divertor heat flux than the counterpart of 2-row

Impurity injection and gas puff would reduce the divertor heat fluxes (lowering thermal load as low as that of no-RMP)

 \rightarrow Long pulse stationary operation would be better off with 3-row RMP control with N₂ and D₂ gas puff

Higher density RMP ELM control, and detached plasmas with q_{95} ~3 would be the direction for reactor-relevant conditions with tungsten, though a low collisionality impact needs to be separately explored

K§TAR

R&D Needs for fusion DEMO-type devices

- Would this be valid even with partially detached plasmas in fusion reactor, including ITER?
- Seemingly conflicting needs of lower RMP current vs divertor thermal loading reduction
 Optimization is essential at a certain point
- What happens to a lower q₉₅ RMP experiments that would end up with higher density plasmas, prone to mode-lockings (moderate-n RMP or low-n Edgeoptimized RMP (ERMP))?
- Which factors are indeed more critical ?
 - high density vs lower collisionality; both may not be simultaneously met in the existing devices, prior to the ITER-era
- Conventional MHD-simulation tools are NOT sensitive to impurity changes or gas puff, unless the relevant edge density variations are significant (probably ditto to nonlinear simulations)
- Ex-vessel low-n RMP use for ELM control, compatible with radiative divertor

KSTAR

BACK-UPs

K-DEMO Divertor SOL Physics Calculation using UEDGE

Key Features of UEDGE

Physics:

- Multispecies plasma;
 var. n_{i,e}, u_{lli,e}, T_{i,e}, φ
- Flux-limited kinetic corrections
- Fit radial plasma transport coeff.
- Reduced Navier-Stokes or Monte Carlo for wall-recycled/sputtered neutrals
- Multi-step ionization and recombination

Numerics:

- Non-orthogonal mesh for fitting divertor
- Steady-state or time dependent

Benchmarking:

- Comparison ITER simulations

give

similar results as reference ITER

SOLPS/EIRENE detached cases

Ref.) T.D. Rognlien and M.E. Rensink, Fusion Engineering and Design , 2nd IAEA DEMO Workshop, 2017

Y. In/TM_DivCon2022

S.J.Kwon et al, presented at PSI-24 (2021)

K-DEMO Case study: Heat Flux Profiles for Heating Power 600 MW

