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Recently established radiative divertor under RMP-driven, ELM-crash-suppression in KSTAR

suggests a promising venue for detached plasmas in fusion DEMO reactor
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ITER-like 3-row Resonant Magnetic Perturbation (RMP)-driven ELM-crash-suppression
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Y. In et al, Plenary talk at AAPPS-DPP (2021)
Demonstrated the co-existence of RMP-driven ELM-crash-suppression and radiative divertor
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When RMP-driven ELM control becomes successful, the accompanying

divertor thermal loading should be sufficiently low in reactor
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Field-line-tracing, including plasma response, has been matched

guite well with diagnosed divertor heat flux striation
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WMST
RMP-driven, ELM control
— Stochastic magnetic boundary/Decoupling core mode-locking and edge
RMP
— Secured accessibility for ELM-crash-suppression with the cost of the
substantial increase of divertor heat flux peaks

ITER or reactor-relevant issues
a) Divertor heat flux broadening
b) Lowering the peaks under RMP-driven, ELM-controlled periods
via enhanced radiative loss at edge and SOL
c) Caveats (could be quite narrow range of operational conditions)

Reactor-oriented R&D needs
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In fusion reactor, edge conditions belong to banana regime for both ions and

electrons, suggesting low collisionality and high density plasmas
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In fusion reactor, edge conditions belong to banana regime for both ions and

electrons, suggesting low collisionality and high density plasmas
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Recent KSTAR RMP data (Revised) @ Collisionality
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ITER-like 3-row ELM-crash-suppression, rather than 2-row RMPs would be more

desirable in terms of divertor thermal loading, in particular, with impurity control
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Divertor thermal loading helps us decide the most favorable RMP-driven, ELM-crash-suppression
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With + , the divertor thermal loading gets

lowered to a manageable level (below 1MW/m?) with 3-row -
]
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Y. In et al, Plenary talk at AAPPS-DPP (2021)

Established an exemplary case to combine RMP-driven, ELM-control and divertor
thermal loading control simultaneously !
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Radiatively controlled divertor is prone to re-attachment

under RMP ELM-crash-suppression
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RMP only Imaging bolometer
2-row RMP ELM suppression 3-row RMP ELM suppression

RMP + N, +diffusive D, gas
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Indicative of detachment
(without RMP)

In courtesy of W. Choe’s group (KAIST)
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Divertor thermal loading during RMP, ELM control has been

favorably controlled with and

WNiST
3-row RMP ELM suppression would be more favorable in terms of peaked
divertor heat flux than the counterpart of 2-row

Impurity injection and gas puff would reduce the divertor heat fluxes
(lowering thermal load as low as that of no-RMP)

=» Long pulse stationary operation would be better off with 3-row RMP
control with N, and D, gas puff

Higher density RMP ELM control, and detached plasmas with q45 ~3 would
be the direction for reactor-relevant conditions with tungsten, though a
low collisionality impact needs to be separately explored

K’TAR Y. In/TM_DivCon2022 m



R&D Needs for fusion DEMO-type devices

IAFINST

Would this be valid even with partially detached plasmas in fusion reactor,
including ITER?

Seemingly conflicting needs of lower RMP current vs divertor thermal loading
reduction =» Optimization is essential at a certain point

What happens to a lower ¢, RMP experiments that would end up with higher
density plasmas, prone to mode-lockings (moderate-n RMP or low-n Edge-
optimized RMP (ERMP))?

Which factors are indeed more critical ?

- high density vs lower collisionality; both may not be simultaneously met in the existing
devices, prior to the ITER-era

Conventional MHD-simulation tools are NOT sensitive to impurity changes or
gas puff, unless the relevant edge density variations are significant (probably
ditto to nonlinear simulations)

Ex-vessel low-n RMP use for ELM control, compatible with radiative divertor
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BACK-UPs
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K-DEMO Divertor SOL Physics Calculation using UEDGE

Key Features of UEDGE

Physics:
— Multispecies plasma;

var. Nie, Ujjie, Tie, P
— Flux-limited kinetic corrections

— Fit radial plasma transport coeff.
— Reduced Navier-Stokes or Monte
Carlo for wall-recycled/sputtered

neutrals
— Multi-step ionization and
recombination

Numerics:
— Non-orthogonal mesh for fitting
divertor

— Steady-state or time dependent

Benchmarking:

— Comparison ITER simulations

give

similar results as reference ITER
SOLPS/EIRENE detached cases.

Ref.E T.D. Rinlien and M.E. Rensink, Fusion Engineering and Design , 2nd IAEA DEMO Workshop, 2017
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K-DEMO Case study: Heat Flux Profiles for Heating Power 600 MW

____: strong private-flux pumping

- - - weak private-flux pumping Impurity: N
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