©) EUROfusion

— -

Viodeling the Response of Iuigsten to Fusi
I'hermal Loading ConditionsSi§i=REX 1001
A.Durifa, M. Richou?, G. Kermouche®, J

With the kind help of K.Mergia, G. Pintsuk, J. Mougenot, Y. Charles
Date: 09/11/2022

Start EEG: 01/06/2020 B Mines Saint-Etienne, CNRS, UMR 5307 LGF, CenMnt-Etienne, France
End of EEG: 31/12/2022

C University of Lyon, Ecole Centrale Lyon, LTDS, CNRS UMR 5513, 42023 Saint-Etienne

This work has been carried out within the framework of the
EUROfusion Consortium and has received funding from the
Euratom research and training programme 2014-2018 and
2019-2020 under grant agreement No 633053. The views
and opinions expressed herein do not necessarily reflect
those of the European Commission.

NN TU
A [ T

sy oo b
% NATIONAL CENTRE FOR L-I,-_DS " LGF
iy SCIENTIFIC RESEARCH “DEMOKRITOS e 2507

mmmmmm




\
Z

'/,ﬂ
\§
=

]

Context

/
(/

Very High
thermal loads

Tungsten
plasma facing

material / NEUTRONS

INTERACTIONS

Cu-OFHC
CuCrZr tube

Water=¥

. — - \\ 7 p -
G.Pintsuk et al, FED (2021) EUROFUSION, WPDIV meeting — June 2019
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T-REX goal: tungsten modelling \{\&::,/'))
Provide, for tungsten, a finite element modelling tool able to
assess, at the macroscopic scale, relevant stress and strain
mechanical fields under tokamak operation conditions to assist
component/material design

o YS 3
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MACRQOSCQPIC Behaviour
£ Di:s]pl eeeeee t
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First phase of the T-REX development
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Input:
Thermal / mechanical properties as function of the
(i) neutron irradiation, (ii) the temperature, and (iii) the microstructural state

‘‘‘‘‘

interactions

|

= Thermally activated = Neutron irradiation
: phenomena I :
(softening)

...................................................................................................................
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Microstructural evolution changes the

First phase of the T-REX developmen
tungsten mechanical behavior (softening)

0}

As-Received t
€
(0)
Softened ‘|:

Input:
Thermal / mechanical properties as
(i) neutron irradiation, (ii) the temp

o

= Thermally activated
: phenomena
(softening)

...................................................................................................................
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First phase of the T-REX developmen

Input:
Thermal / mechanical properties as
(i) neutron irradiation, (ii) the temp

P —————— X (%) .
Softening fraction —

Annealing time
= Thermally activated

phenomena
(softening)

...................................................................................................................

[1] M. Richou et al, JNM, 2019
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First phase of the T-REX development
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Input:
Thermal / mechanical properties as function of the
(i) neutron irradiation, (ii) the temperature, and (iii) the microstructural state

‘‘‘‘‘

interactions

|

= Thermally activated = Neutron irradiation
: phenomena I :

: (softening)
s aasessases s s AR A AR s A s s aa st sna s nnsnnnnans) 3 dpa after 2 full power
years in DEMO [3]

- Cavities, dislocations
networks, solid/gas

. N transmutations, etc...
[2]Dubinko (2020) EURO fusion midterm  [3] Noce et al, FED (2020)
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First phase of the T-REX development
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Input:
Thermal / mechanical properties as function of the
(i) neutron irradiation, (ii) the temperature, and (iii) the microstructural state

‘‘‘‘‘

interactions

|

= Thermally activated = Neutron irradiation
: phenomena I :
(softening)

...................................................................................................................

Output:
Influence of the neutron irradiation and thermally activated phenomena on the tungsten damage process
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1- Thermal modelling T-REX assumptions

2- Mechanical modelling T-REX assumptions
3- T-REX applications

4- Conclusions & perspectives
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1- Thermal modelling T-REX assumptions
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T-REX assumptions related to the thermal modelling:

dpa is assumed as constant

dpa(constant)
v

softening gradient

25 cycles

Th | gradient

- bttt Thermal modelling
v v
T(t) softening fraction (t)

[4]S. Ishino et al, J. Fus. E. (1989)

1.T-REX hypothesis:
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— dpa is assumed as constant over the simulation
time (dpa rate expected for DEMO: 10 dpa/s [4]

Order of magnitude:
Minute (plasma shock) 2 6e-5 dpa
Hour (plasma campaign) = 0,0036 dpa
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T-REX assumptions related to the thermal modelling: B
decrease of thermal properties due to neutron irradiation

= Neutron irradiation

200

3 Proton herma! sHodent Thermal modelling
X . o 2o v v
.\. .: irradiation T(t) softening fraction (t)

& &

N\ Thermal properties [5]

Thermal Conductivity (W,/mK)

0 500 1000 1500 2000 2500 2T_REX hypothe5|so
@ Existing Unirradiated @ Unirradiated 4 3.9dpa (115 deg() . . . . .
st asbaAadldl B — Proton irradiation data is considered for
1hf1000C

the modeling to give trends

Further experimental data needed:

I-i> Need to be confirmed under neutron irradiation (func. of irradiation temperature & dpa)

[5] E. Gaganidze, 6" DIM meeting, adapted from [Habainy, JNM, 2018]
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T-REX assumptions related to the thermal modelling: )

. . . . . . ° ° “\ /)
shift of the tungsten softening kinetics can be considered due to neutron irradiation \\5—!))

= Neutron irradiation Trends need to be
consolidate by

= As-fabricated i
further experiments

[6] m Heat-treated at B50°C (24d)
- Irr. at 850°C (PXW2) }24 days (~0,45 dpa)
u Irr. at =850"C (nominally 1100°C)

< 50% softened after 24 days at 850°C (~0.4 dpa)
For raw tungsten, after 24 days at 850°C no softening expected

8 8 8 8 8 3

Softening fraction (%)

X (%) W (dpa>0)

0 W (dpa=0)

pure W 3.T-REX hypothesis:
— Possible shift on the softening kinetics

N

Annealiﬁg time

Further experimental data needed for future T-REX implementation:

L:> * Need to be further analyzed

[6] H. Gietl et al, JAC, 2022

Position ref. EEG-2020/30 - A. DURIF | IAEA Divertor concept. Nov 2022|



2- Mechanical modellingT-REX assumptions
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T-REX mechanical model

Elastic-viscoplastic model is
considered [7]

I-i> assuming linear
kinematic hardening

[7] A. Durif et al, IJF, 2021

MACRQSCOPIC Behaviour
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T-REX mechanical model consider tungsten neutron embrittiement \

= Neutron irradiation

1000

m Pure W (R, AC) / Joyo / 400-850C

+ Pure W (R) / JMTR / 600-800C

+Pure W (5X} / HFIR (NS) / 90C

800 | ®Pure W (SX, R, AC) / HFIR (NS) / 400-850C
4 Pure W (R) / HFIR (S) / 600-800C

APure W (SR) / HFIR (S) / 600-800C

R: Recrystallized by heat treatment
AC: Arc-melted

SX: Single crystal

SR: Stress-relieved by heat-treatment

600

HFIR (NS): Non thermal neutron shielded
HFIR (S): Thermal neutron shielded

AHv[k
w0 | AYS[MPa] = #

AYs= 733 MPas®
V4

Pure W
HFIR (NS)_
.

Irradiation hardening, AHV

200 | AYs= 100 Mpa

[8] (a)

_____ m-

Pure W
HFIR (S)

0.001 0.01 0.1

Displacement damage [dpa]

[8] S. Nogami et al, JNM, 2021 [9] Terentyev, IJRMHM, 202

1

MACRQSCOPIC Behaviour

n dpa
YSn dpa

0}

AYSI 1 0 dpa

Y

lE

0dpa

4.T-REX hypothesis:
—> Evolution law given by [9] is considered to set AY's
(embrittlement) for irradiated tungsten
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Mechanical behavior of tungsten changes due to neutron irradiation W

Assumption related to AYs :

L:> (a) Pure W
At 0.7 dpa [10]

© Softening under neutron irradiation leads to reduce
AYSig‘w“ ot <, the irradiation-enhanced embrittlement of tungsten
o A\
QE-. o \«‘36@‘0 \?/})@
% 4721044 1031 456  |AYs=0
% 1000 :5 ' . 6.T-REX hypothesis:
% » = 9“"5 AYs=0 MPa for softened neutron irradiated tungsten
0 -
§ l ?Oﬂl‘:g
W & .
TS e © Further experimental data needed:

R
Imadiation Temperature, °C

L:> * Need to be further analyzed

[10] T. Miyazawa, JNM, 2020
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Current state of the T-REX tool (Nov. 2022)

{
b=

dpa(constant)
v

Softenig gradient

25 cycles

hermal gl Thermal modelling

v v

T(t) softening fraction (t)
v v ¥ ==ozcocodl
Stress
W (dpa>0)
v Softened W W (dga=0)
/@ / Softened W (dpa >0)
Strain Mechanical modelling
v v
Strain (t) Stress (t)

Position ref. EEG-2020/30 - A. DURIF | IAEA Divertor concept. Nov 2022|



3- T-REX applications
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Applications / b AT
L:> i
StUdy related to WEST & ITER: i o Thermally activated = ;
| phenomena I
Interpret the tungsten monoblock leading edge cracking (softening)
observed during the WEST phase | operation [11] [12] S S ——
ND
(Poloidal) TD (Toroidal)
321 I590.4
) 30 - 524.8
Main results: wE; 02
Leading edge cracking S 2 9365 roer
could occur under fast 5.1z % 328.0 2 B
transient (disruption) 8 = O e iiure Critarion 262.4 & SO T
é 24 | ‘c"g, 196.8
E 2
= X 131.2
24 %
b} 65.6
-
20 —L : : : 0.0 .
0.2 0.3 0.4 0.5 0.6 0.7 Side surface

[11] A. Durif et al 2022 Phys. Scr. 97 074004 Component misalignment (mm)

[12] A. Durif et al 2022 FED [Submitted]
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< s = Their
Applications interactions
L Study related to ITER & DEMO = Thermally activated = Neutron irradiation
phenomena I |
(softening)

Study the influence of the neutron irradiation on the monoblock tungsten damage process
change (from 0 to 0.3 dpa) [13]

Main results:
Monoblock geometry can be optimized to delay crack opening (optimize the lifetime)

[13] A. Durif et al, J. Nuc. Mat. 569 (2022) 153906
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Conclusions & perspectives (1/2) \{\\%5//,))
T-REX model takes into account the influence of both isolated and combined heat el
: : . . Material &
flux/neutron loading on thermal and mechanical properties change of tungsten to improve = TR
the estimation of stress and strain mechanical fields design
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Conclusions & perspectives (1/2) \

T-REX model takes into account the influence of both isolated and combined heat el

. . . . Material &
flux/neutron loading on thermal and mechanical properties change of tungsten to improve = TR
the estimation of stress and strain mechanical fields design

T-REX assumptions:

- Elastic-viscoplastic behaviour for tungsten, irradiated tungsten, softened tungsten

- dpa assumes as constant over the time of the finite elements modelling simulation
- dpa impact leads to:

¢ a decrease of thermal conductivity

e a shift of Yield Stress (independent temperature parameter) expected after softening
e a shift of the tungsten softening kinetics .
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Conclusions & perspectives (2/2) / interactions

phenomena

L. Model validation (2023): = Thermally activated +E>

Qualitative high heat flux campaigns in HADES to study the number of cycles to failure

Quantitative strain estimation via HADES and embedded FBG in PFCs (FIBRA-MECA project)

{ TEETETERE A FNrerme

k ’i!lllllll :

Structural Health

Monitoring
[13] N. Chanet et al, FED, 2021
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T-REX mechanical constitutive equations [5]

Elastic-viscoplastic
constitutive
equations:

Il:> assuming linear
kinematic hardening

MACROSCOPIC SCALE

Elastic-viscoplastic model:

got—gh=g=8+8 (1)

o=C g 2)

f@X) =J(S-X) - Y(3)

TP — 3. §_—)=(

L) @

=_2,=p .- _ EEr

X 3H e with H o (5)

p =< @ >n (6)

Elastic behaviour if f < 0,p = 0.
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MACROSCOPIC Behavior

Y, Eand Er ~ f (T)

Er ~ 0 for tungsten

gtot: total strain tensor / £M: Thermal strain tensor / £€: elastic strain tensor / EPPlastic strain tensor / G : Stress tensor / C: elastic stiffness / f(o,X%): plastic
criteria / X : kinematic hardening / ?: Yield stress /S: deviatoric stress tensor / p: accumulated equivalent plastic strain / n, K & H: material parameters

[S] A. Durif et al, IJF, 2021

Position ref. EEG-2020/30 - A. DURIF | IAEA Divertor concept. Nov 2022|




\
)
)

ol

'~
/
7

T-REX: Concentration profil of D

“a
{
\\\\

Trapping / Transport modelling

Analytical solutions (performed as post-treatment) taking into account the estimated
dislocation density (nb of traps, n; )

- v

v 1 I o
e e the characterisitic detrapping time

t
(D concentration)

With:

v (Tyem the characteristic trapping time

¢ the incident heat flux
D(T) the diffusion coefficient

Based on equations presented in [R.Delaporte-Mathurin,
K (T) a thermo dependent parameter

2020] and [E- Hodille et al, 2017] ni an output of the T-REX simulations
e
Etj — Rtrap.i(T= Cm) * M
|
Rtmp i —
’ 15(T)
l + Um(;rj " Cim

P Cimp - Rp

e D(Tsurface)
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T-REX: Concentration profil of D

Trapping / Transport modelling

Analytical solutions (performed as post-treatment) taking into account the estimated

dislocation density (nb of traps, n; )
v
Ni (p,*) (*dpa neglected as first approach)

(densité de disclocation)
v

c?

t
(D concentration)

How estimate Nt as function of p?

20x10% Specimen D. Terentyev et al. / J. Mech. Phys. Solids 85 (2015) 1-15
© Tungsten
O Tungsten - § percent
o 6 rhenm o~ 11| I Esment dats Same trends for W and softened W
§ £ 873 Kand 2.2¢10" 5
6- ; " ‘? Annealed tungsten — nl — p * 3.1012 + 5.1012
E ] ]
O B £ Assumption:
= K © . . . . .
e 8 - plastlc strain = strain (elastlc strain
a2 I .
& 8 is neglected)
2 | | | 1 ] 1E12
= 0 2 3 4 5 0.30
(_%‘ strain, e, perce(196) Strain

Figure 10. - Variation of dislocation density with
strain for unalloyed tungsien and tungsten -
9 percent rhenium,
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T-REX: Concentration profil of D \

Trapping / Transport modelling

Analytical solutions (performed as post-treatment) taking into account the estimated

dislocation density (traps, n; )
v

N; (p, dpa)

(densité de disclocation)
For W:
N inie w = 4.1013/m?  [papier CM]

N = Ny iie w + p * 3.1012

Titre du graphique

For fully softened W: e
nl lnlt_WT'x = 5'1012/m2 [Te renter] 00 - ,&V:35+1z:+55+12
B 12 3,00E+13 .
Ni = N init wrx + (P(t) — p(tx=50%)) * 3.10

1,00E+13 |
¢
0,00+00
0 5 10 15 20 25

If the softening process is ongoing:
If X<50% > cf W
If X>50% -2 cf fully softened W
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Non-exhaustive list of upcoming experiments W_ )
=7
. . - . . /ﬁ)
)
Irradiation campaigns to be organized in FP9 C
N < N ==
LOTD 5 different ITER-conform tungsten grades, 400-800-1200C, 0.2 - 0.5 dpa for HHF Q4 2020 - Q3 2021, completed Tensile tests at 600C are performed, rest is
pending decision on new ALMT grade
LOTE Steels £97-2; 3 optimized E97 grades for LT, 2.5 dpa, 300C for SDQ Q4 2021 - Q3 2022, running Charpy at KIT, tensile at SCK CEN
LOT KI W-CuCrZr joints (fabricated by FAST), 0.5 dpa, 150-350C for HHF Ql 2022 - Q3 2022, running Tensile, hardness, SEM
LOT A2 Steels E97-3, 3 dpa, 300-350-450-550C. Fracture toughness samples for TBM Q2 2022 - Q2 2023, loading to Fracture toughness, hardness
qualification for TBM reactor
LoT Steel E97-3; 6 optimized ES7 grades for LT, 2.5 doa, 300C for SDQ Q2 2022 - Q1 2023, manufacturing  Charpy at KIT, tensile, hardness at SCK CEN
spQ
Tungsten. Validation of design rules for brittle and transition region fracture 400/600 Q3 2022 - Q2 2023, design Bending tests, fracture toughness
and 1000/1200C at 0.2 and 1 dpa, DCC-IC
Tungsten. Tensile properties & DBTT of W advanced grades under shielded irradiation Q3 2022 - Q2 2023, design Tensile tests, hardness
(Gd), 400-800-1200C, 1 dpa, for HHF
Tungsten. High temperature irradiation (recrystallization and limit for irradiation Q3 2022 - Q1 2023, design Bending/tensile tests
damage recovery), 0.2 dpa 1200-1600C, for HHF
CuCrZr & Steel. Low-T irradiation for DIV (E97-3, CuCrZr), Tirr=50-150-250C (350 and Q2 2022 - Q1 2024, design Tensile, fracture toughness, LCF
450 for CuCrZr) to cover the gaps, 1 -3 - 6 dpa.
Low-T irradiation for IREMEV (E97, W, CuCrZr), Tirr=50 and 300C for 0.1-1 doa Q3 2022 - Q1 2023, design TEM study, in-situ annealing and in-situ
deformation, PAS/hardness
Irradiation of advanced Cu-materials (Wf and W yarns) materials, irradiation of sole W-  Exact design and sample geometry  Tensile or bending tests, objective is to
fibers/yarns. Tirr= 400 — 800 — 1200C to be combined with other W irradiation. For DIV still te be defined. define DBTT shift
and HHF.

M. Rieth, D. Teréntyev | Designers Interface Meeting 6 | Online | 18th May 2022 | Page 4
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T-REX goal: considerer thermally activated phenomena at macroscopic scale \

= Thermally activated
phenomena

As-Received

Softened

=
=

Softened = restored / recrystallized

[1] A. Durif et al, FED, 2019
[2] A. Durif et al, IJF, 2021

Stress (MPa)

200 1

1
T=750°C, V=6x10-3 /s [

]

—— Tungsten
— Softened Tungsten

0.05

0.'10 O.ELS 0.I20
Strain
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Upcoming simulations: representative to High Heat Flux experiments S

Focus on the accumulation of plastic strain:

I.;> Under thermal cycles (15 - 20
MW/m?) the tungsten damage
process is governed by plasticity =

28mm

Focus on the evolution of the equivalent plastic strain increment per
cycle (Ap) at maximum expected (point B)

[1] A. Durif et al, FED, 2019

[18] G.Pintsuk et al, FED (2021)
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ITER divertor target geometry and boundary conditions

Geometry

— 28 —

28

13

@12

4.5

@15

@17

[1] A. Durif et al, FED, 2019

Convection parat

120°C,
3.3 MPg,
12 m/s

“.
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AYs (dpa)

100 MPa (0.01 dpa)
400 MPa (0.1 dpa)
733 MPa (0.3 dpa)

/
2\

Boundary conditions

Intensity:
15 & 20 MW/m?

Thermal cycle

T&
4—P> €¢—» time

28mm




Influence of dpa on Ap (plastic strain increment per cycle)

0.7 4

0.6

Heat flux

_...

ITER 20 MW/m?
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b=

Ap decreases with dpa

As Ap~ 0 at 0.3 dpa, damage
process could be not governed
by plasticity




Influence of incident heat flux intensity on Ap

0.7 - .‘ -®- ITER 20 MW/m?
\ -@- ITER 15 MW/m?
06{ @
\\\
0.5 - .
— Y
X AN
o 04- . i
5 No softening
031 @ |
'!\ ‘n‘_‘““h‘
024 @ Rt
0.1- "“u.\ H“"“w..
S L
0.0 W —mmmmmmm————————————— °
0.00 0.05 0.10 0.15 0.20 0.25 0.30
dpa
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e As expected, if heat flux N then Ap N

L

¢ At15MW/m?:

As Ap~ 0 at 0.1 dpa, damage process
could be not governed by plasticity
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ITER / DEMO divertor target geometries and boundary conditions \{\‘%_,,/1))
Geometry Convection param.  AYs (dpa) Boundary conditions
Intensity:
28 15 & 20 MW/m?
Thermal cycle
e 120°C, T
12 m/s ?? time
or2 100 MPa (0.01 dpa)
o 400 Mpa (0.1 dpa)
733 Mpa (0.3 dpa)
o 130°C, I
S 4MPa,
) 16m/s

[1] A. Durif et al, FED, 2019
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Influence of geometry on Ap

(i
(
A\

Heat flux

-@- ITER 20 MW/m?
-@®- ITER 15 MW/m?

w X 2
B DEMO 20 MW/m? | | Geometry changes lead to N Ap

= Ap (DEMO@20MW/m?) = Ap (ITER@15MW/m?)

Ap (%)

* For another geometry, Ap Max is
e obtained on the side face of the
Ny monoblock

~@ | 2 relative damage process have to be
“““““““““““““““““““ - investigated (experimentally or
numerically)
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