

Modeling the Response of Tungsten to Fusion reactor Thermal Loading Conditions: T-REX tool

A.Durif^a, M. Richou^a, G. Kermouche^b, J-M.Bergheau^c

With the kind help of K.Mergia, G. Pintsuk, J. Mougenot, Y. Charles

Date: 09/11/2022 Start EEG: 01/06/2020 End of EEG: 31/12/2022

A CEA, IRFM, F-13108 Saint-Paul-Lez-Durance, France B Mines Saint-Etienne, CNRS, UMR 5307 LGF, Centre SMS, F – 42023 Saint-Etienne, France C University of Lyon, Ecole Centrale Lyon, LTDS, CNRS UMR 5513, 42023 Saint-Etienne

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Context

Position ref. EEG-2020/30 - A. DURIF | IAEA Divertor concept. Nov 2022|

Provide, for tungsten, a finite element modelling tool able to assess, at the macroscopic scale, relevant stress and strain mechanical fields under tokamak operation conditions to assist component/material design

Input: Thermal / mechanical properties as function of the (i) neutron irradiation, (ii) the temperature, and (iii) the microstructural state

First phase of the T-REX development

Input: Thermal / mechanical properties as (i) neutron irradiation, (ii) the temp Microstructural evolution changes the tungsten mechanical behavior (softening)

⇒ Thermally activated phenomena (softening)

Input: Thermal / mechanical properties as function of the (i) neutron irradiation, (ii) the temperature, and (iii) the microstructural state

Input: Thermal / mechanical properties as function of the (i) neutron irradiation, (ii) the temperature, and (iii) the microstructural state

Output:

Influence of the neutron irradiation and thermally activated phenomena on the tungsten damage process

- 1- Thermal modelling T-REX assumptions
- 2- Mechanical modelling T-REX assumptions
- 3- T-REX applications
- 4- Conclusions & perspectives

1- Thermal modelling T-REX assumptions

Position ref. EEG-2020/30 - A. DURIF | IAEA Divertor concept. Nov 2022 |10

T-REX assumptions related to the thermal modelling: dpa is assumed as constant

1.T-REX hypothesis:

 \rightarrow dpa is assumed as constant over the simulation time (dpa rate expected for DEMO: 10⁻⁶ dpa/s [4]

Order of magnitude: Minute (plasma shock) \rightarrow 6e-5 dpa Hour (plasma campaign) \rightarrow 0,0036 dpa T-REX assumptions related to the thermal modelling: decrease of thermal properties due to neutron irradiation

⇒ Neutron irradiation

🔪 Thermal properties [5]

2.T-REX hypothesis:

→ Proton irradiation data is considered for the modeling to give trends

Further experimental data needed:

Need to be confirmed under **neutron** irradiation (func. of irradiation temperature & dpa)

T-REX assumptions related to the thermal modelling: shift of the tungsten softening kinetics can be considered due to neutron irradiation → Neutron irradiation
Trends need to be

Further experimental data needed for future T-REX implementation:

Need to be further analyzed

Mandland

2- Mechanical modellingT-REX assumptions

Position ref. EEG-2020/30 - A. DURIF | IAEA Divertor concept. Nov 2022 |14

MACROSCOPIC Behaviour

Elastic-viscoplastic model is considered [7]

T-REX mechanical model consider tungsten neutron embrittlement

 \rightarrow Evolution law given by [9] is considered to set ΔYs (embrittlement) for irradiated tungsten

Assumption related to ΔYs :

Softening under neutron irradiation leads to reduce the irradiation-enhanced embrittlement of tungsten

6.T-REX hypothesis: ΔYs =0 MPa for softened neutron irradiated tungsten

Further experimental data needed:

• Need to be further analyzed

Current state of the T-REX tool (Nov. 2022)

18

3- T-REX applications

Position ref. EEG-2020/30 - A. DURIF | IAEA Divertor concept. Nov 2022 |19

Applications

Study related to WEST & ITER:

Interpret the tungsten monoblock leading edge cracking observed during the WEST phase I operation [11] [12]

32

30

28

26

24

22

20

Not

, investigated

0.2

0.3

Impact factor (MW/m²/s)

Main results: Leading edge cracking could occur under fast transient (disruption)

[11] A. Durif et al 2022 Phys. Scr. 97 074004 [12] A. Durif et al 2022 FED [Submitted]

Position ref. EEG-2020/30 - A. DURIF | IAEA Divertor concept. Nov 2022

Applications

Study the influence of the neutron irradiation on the monoblock tungsten damage process change (from 0 to 0.3 dpa) [13]

Main results:

Monoblock geometry can be optimized to delay crack opening (optimize the lifetime)

[13] A. Durif et al, J. Nuc. Mat. 569 (2022) 153906

5- Conclusions & perspectives

Position ref. EEG-2020/30 - A. DURIF | IAEA Divertor concept. Nov 2022 |22

T-REX model takes into account the influence of both isolated and combined heat flux/neutron loading on thermal and mechanical properties change of tungsten to **improve the estimation of stress and strain mechanical fields**

T-REX model takes into account the influence of both isolated and combined heat flux/neutron loading on thermal and mechanical properties change of tungsten to **improve the estimation of stress and strain mechanical fields**

T-REX assumptions:

- Elastic-viscoplastic behaviour for tungsten, irradiated tungsten, softened tungsten
- dpa assumes as constant over the time of the finite elements modelling simulation
- dpa impact leads to:
 - a decrease of thermal conductivity
 - a shift of Yield Stress (independent temperature parameter) expected after softening
 - a shift of the tungsten softening kinetics

24

Thank for your attention

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

□ Thanks to the all T-REX partners

Funding

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under Grant Agreements No. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Model validation (2023):

Qualitative high heat flux campaigns in HADES to study the number of cycles to failure

Quantitative strain estimation via HADES and embedded FBG in PFCs (FIBRA-MECA project)

T-REX mechanical constitutive equations [5]

Elastic-viscoplastic constitutive equations:

assuming linear
 kinematic hardening

MACROSCOPIC SCALE

Elastic-viscoplastic model:

$\overline{\overline{\epsilon}}^{tot} - \overline{\overline{\epsilon}}^{th} = \overline{\overline{\epsilon}} = \overline{\overline{\epsilon}}^e + \overline{\overline{\epsilon}}^p$	(1)			
$\overline{\overline{\sigma}} = \overline{\overline{\overline{C}}} : \overline{\overline{\epsilon}}^{\mathbf{e}}$	(2)			
$f(\overline{\overline{\sigma}},\overline{\overline{\chi}}) = J(\overline{\overline{S}} - \overline{\overline{\chi}}) - Y_{S}(3)$				
$\bar{\bar{\mathbf{\epsilon}}}^{\mathbf{p}} = \frac{3}{2} \dot{p} \frac{\bar{\mathbf{s}} - \bar{\mathbf{x}}}{J(\bar{\mathbf{s}} - \bar{\mathbf{x}})}$	(4)			
$\overline{\overline{\mathbf{\chi}}} = \frac{2}{3}H\overline{\overline{\mathbf{\epsilon}}}^{\mathbf{p}}$ with $H = \frac{EE_T}{E-E_T}$	(5)			
$\dot{p} = <\frac{J(\bar{\mathbf{S}} - \bar{\mathbf{x}}) - Y_S}{K} >^n \tag{6}$				
Elastic behaviour if $f \leq 0$, $\dot{p} = 0$.				

 $\bar{\mathbf{\epsilon}}^{\text{tot}}$: total strain tensor / $\bar{\mathbf{\epsilon}}^{\text{th}}$: Thermal strain tensor / $\bar{\mathbf{\epsilon}}^{e}$: elastic strain tensor / $\bar{\mathbf{\epsilon}}^{p}$ Plastic strain tensor / $\bar{\mathbf{\sigma}}$: Stress tensor / $\bar{\mathbf{c}}^{c}$: elastic stiffness / $f(\bar{\mathbf{\sigma}}, \bar{\mathbf{\chi}})$: plastic strain tensor / $\bar{\mathbf{\chi}}$: kinematic hardening / σ^{γ} : Yield stress / $\bar{\mathbf{S}}^{c}$: deviatoric stress tensor / p: accumulated equivalent plastic strain / n, K & H: material parameters

[5] A. Durif et al, IJF, 2021

T-REX: Concentration profil of D

Trapping / Transport modelling

V

3

 C_t^{eq} (D concentration)

Based on equations presented in [R.Delaporte-Mathurin, 2020] and [E. Hodille et al, 2017]

$$c_{\mathrm{t},i}^{\mathrm{eq}} = R_{\mathrm{trap},i}(T,c_{\mathrm{m}}) \cdot n_{\mathrm{i}}$$

$$R_{\text{trap},i} = \frac{1}{1 + \frac{\nu_{i}(T)}{\nu_{m}(T) \cdot c_{m}}}.$$

$$c_{\max} = \frac{\varphi_{\min} \cdot R_p}{D(T_{\text{surface}})}$$

With: $\frac{1}{v_i(T)}$ the characterisitic detrapping time $\frac{1}{v_m(T).cm}$ the characteristic trapping time ϕ the incident heat flux D(T) the diffusion coefficient K(T) a thermo dependent parameter ni an output of the T-REX simulations

T-REX: Concentration profil of D

30

Strain

0.30

0.00

0

2

9 percent rhenium

3

Strain, e. perce(1%)

Figure 10. - Variation of dislocation density with strain for unalloyed tungsten and tungsten -

.

5

T-REX: Concentration profil of D

Trapping / Transport modelling

N_i (p, dpa) (densité de disclocation)

For W:

 $n_{i \, init_W} = 4.10^{13}/m^2$ [papier CM]

$$n_i = n_{i \ init_W} + p * 3.10^{12}$$

For fully softened W:

 $n_{i \ init_Wrx} = 5.10^{12}/m^2$ [Terentyev]

$$N_i = n_{i \, init_Wrx} + (p(t) - p(t_{X=50\%})) * 3.10^{12}$$

If the softening process is ongoing: If X<50% \rightarrow cf W If X>50% \rightarrow cf fully softened W

Irradiation campaigns to be organized in FP9

(63)	
E	

	Brief description	Irradiation period	PIE planned
LOT D	5 different ITER-conform tungsten grades, 400-800-1200C, 0.2 – 0.5 dpa for HHF	Q4 2020 – Q3 2021, completed	Tensile tests at 600C are performed, rest is pending decision on new ALMT grade
LOT E	Steels E97-2; 3 optimized E97 grades for LT, 2.5 dpa, 300C for SDQ	Q4 2021 – Q3 2022, running	Charpy at KIT, tensile at SCK CEN
LOT KJ	W-CuCrZr joints (fabricated by FAST), 0.5 dpa, 150-350C for HHF	Q1 2022 – Q3 2022, running	Tensile, hardness, SEM
LOT A2	Steels E97-3, 3 dpa, 300-350-450-550C. Fracture toughness samples for TBM qualification for TBM	Q2 2022 – Q2 2023, loading to reactor	Fracture toughness, hardness
LOT SDQ	Steel E97-3; 6 optimized E97 grades for LT, 2.5 dpa, 300C for SDQ	Q2 2022 – Q1 2023, manufacturing	Charpy at KIT, tensile, hardness at SCK CEN
	Tungsten. Validation of design rules for brittle and transition region fracture 400/600 and 1000/1200C at 0.2 and 1 dpa, DCC-IC	Q3 2022 – Q2 2023, design	Bending tests, fracture toughness
	Tungsten. Tensile properties & DBTT of W advanced grades under shielded irradiation (Gd), 400-800-1200C, 1 dpa, for HHF	Q3 2022 – Q2 2023, design	Tensile tests, hardness
	Tungsten. High temperature irradiation (recrystallization and limit for irradiation damage recovery), 0.2 dpa 1200-1600C, for HHF	Q3 2022 – Q1 2023, design	Bending/tensile tests
	CuCrZr & Steel. Low-T irradiation for DIV (E97-3, CuCrZr), Tirr=50-150-250C (350 and 450 for CuCrZr) to cover the gaps, $1 - 3 - 6$ dpa.	Q2 2022 – Q1 2024, design	Tensile, fracture toughness, LCF
	Low-T irradiation for IREMEV (E97, W, CuCrZr), Tirr=50 and 300C for 0.1-1 dpa	Q3 2022 – Q1 2023, design	TEM study, in-situ annealing and in-situ deformation, PAS/hardness
	Irradiation of advanced Cu-materials (Wf and W yarns) materials, irradiation of sole W-fibers/yarns. Tirr= $400 - 800 - 1200$ C to be combined with other W irradiation. For DIV and HHF.	Exact design and sample geometry still to be defined.	Tensile or bending tests, objective is to define DBTT shift

M. Rieth, D. Terentyev | Designers Interface Meeting 6 | Online | 18th May 2022 | Page 4

33

⇒ Thermally activated phenomena

Softened = restored / recrystallized

[1] A. Durif et al, FED, 2019[2] A. Durif et al, IJF, 2021

Focus on the accumulation of plastic strain:

Under thermal cycles (15 - 20 MW/m²) the tungsten damage process is governed by plasticity ->

Focus on the evolution of the equivalent plastic strain increment per cycle (Δp) at maximum expected (point B)

[18] G.Pintsuk et al, FED (2021) [1] A. Durif et al, FED, 2019

ITER divertor target geometry and boundary conditions

6 mm A

- Δp decreases with dpa
- As Δp~ 0 at 0.3 dpa , damage process could be not governed by plasticity

- As expected, if heat flux ↘ then △p ↘
- At 15 MW/m² :

As Δp^{\sim} 0 at 0.1 dpa, damage process could be not governed by plasticity

37

ITER / DEMO divertor target geometries and boundary conditions

[1] A. Durif et al, FED, 2019

- Geometry changes lead to $\supseteq \Delta p$ $\rightarrow \Delta p$ (DEMO@20MW/m²) $\approx \Delta p$ (ITER@15MW/m²)
- For another geometry, Δp Max is obtained on the side face of the monoblock
- → relative damage process have to be investigated (experimentally or numerically)