Van den Kerkhof et al. – IAEA 4th DCTM – Numerical design optimization of plasma-facing components using functionally graded materials

KU LEUVEN

Numerical design optimization of plasma-facing components using functionally graded materials

S. Van den Kerkhof^{a,*} M. Blommaert^a J. W. Coenen^{b,c} M. Baelmans^a

^aKU Leuven, Thermal and Fluids Engineering group, Department of Mechanical Engineering, 3001 Leuven, Belgium

^bForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung 52425 Jülich, Germany ^cDepartment of engineering Physics, University of Wisconsin, Madison, WI 53706 Madison, USA

* sander.vandenkerkhof@kuleuven.be

1

Numerical design optimization

of plasma-facing components (monoblocks)

Using functionally graded materials (FGMs)

The Functionally Graded Material (FGM) concept

Possible W-Cu FGM realizations

4

Van den Kerkhof et al. - IAEA 4th DCTM -Numerical design optimization of plasma-facing components using functionally graded materials

Topology optimization of microchannel heat sinks

Divertor shape optimization - see talk of W. Dekeyser this afternoon

KU LEUVEN

er et al 2014 Nucl. Fusion 54 073022 Bottom, right: M. Blommaert 2017 Energy & Environment, 365, Dissertation, RWTH Aachen University nput. Methods Appl. Mech. Engrg. 285 571-586

Why numerical optimization?

- Improve the design automatically no manual trial-and-error required
- Speed up the design process
- Account for complex physics through high-fidelity (PDE-based*) models
- Include design constraints directly
- Deal with an arbitrary number of design dofs efficiently

Goals

- Show potential of FGMs by optimizing the 3D material composition distribution
- Show power of optimization approach

Contents

- Introduction
- The FGM optimization problem
- Optimized FGM monoblocks & influence of uncertainties
- Conclusion and outlook

Three optimization problem elements

Design variables	What can we change? \rightarrow Tungsten fraction ϕ in each location
Cost function	How to quantify performance? → Ideally lifetime
Constraints	Which designs are infeasible? → Physical constraints

The thermomechanical model

- Model equations:
 - Temperature: $\nabla \cdot \kappa_{FGM} \nabla T = 0$
 - Navier's equation: $\nabla \cdot \vec{\sigma} = \vec{0}$,

$$\sigma_{ij} = \lambda \big(\epsilon_{kk} - 3\alpha_{CTE} (T - T_{SFT}) \big) \delta \\ + 2\mu \big(\epsilon_{ij} - \alpha_{CTE} (T - T_{SFT}) \delta_{ij} \big)$$

- Material properties for FGM:
 - $\kappa_{FGM}(\phi, T)$: data* of melt-injected W-Cu
 - Others: linear mixture rule
 - T_{SFT}: stress-free temperature, assumed constant and known

Optimization problem formulation

What are the difficulties?

- Many design variables ($> 10^3$)
- Many constraints: imposed in each location (> 3 · 10³)
- Discontinuous constraints

How do we tackle them?

- The discrete adjoint approach one simulation → all sensitivities
- An augmented Lagrangian algorithm – see [Van den Kerkhof S. *et al.* 2021, *Nucl. Fus.,* 61 046050]

Contents

- Introduction
- The FGM optimization problem
- Optimized FGM monoblocks & influence of uncertainties
 - $_{\circ}$ Single case study: von Mises stress minimization
 - Influence of cost function, SFT, constraints
 - $_{\circ}$ Comparison to ITER and FT reference designs
- Conclusion and outlook

Van den Kerkhof et al. – IAEA 4th DCTM – Numerical design optimization of plasma-facing components using functionally graded materials

Single case: von Mises stress minimization

Parameter study: cost function & SFT

All figures: Van den Kerkhof S. et al. 2021, Nucl. Fus., 61 046050

How important are temperature constraints?

Do FGM designs outperform ITER or FT designs?

- Yes, if compared under the circumstances for which they were optimized!
 - Optimized for stress: factor 2 4 decrease (near original W-Cu interface)
 - Optimized for yield: factor 2 10 decrease
- However:
 - o SFT could be different for reference and FGM designs
 - Optimized designs for one cost function do not always perform well in terms of other cost function
- Therefore, it is **important** to have an **accurate SFT** estimation and to have a **representative and robust cost function!**

Contents

- Introduction
- The FGM optimization problem
- Optimized FGM monoblocks & influence of uncertainties
- Conclusion and outlook

Conclusions

- Adjoint optimization techniques allow efficient numerical optimization of many innovative design concepts
- Numerically shown that FGMs can significantly reduce stress concentrations and lead to improved designs compared to ITER and FT
- We can deal with complex design requirements automatically
- Cost function, constraints, and model parameters (SFT) influence the design significantly

Open questions

- Design & optimization for DEMO:
 - Design requirements & performance criterium (cost function/constraints)?
 - Operation conditions?
- Modelling:
 - What about unsteady heat loads?
 - Influence of neutron irradiation?
 - Influence of manufacturing process parameters on properties?

Van den Kerkhof et al. – IAEA 4th DCTM – Numerical design optimization of plasma-facing components using functionally graded materials

Thank you!

21