

Proposal for a high Z liquid metal divertor

Nov 8, 2022 IAEA Headquarters - 4th TMDC

This work has been partially carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The viewsand opinions expressed herein do not necessarily reflect those of the European Commission.

Proposal for a high Z liquid metal divertor IAEA Headquarters - 4th TMDC

Matteo Iafrati 1 Selanna Roccella 1 Riccardo De Luca 2 Giacomo Dose 3 Andrea Mancini 1 Simone Mingozzi 4 Giuseppe Mazzitelli 1

¹ENEA Frascati - Department of Fusion and Nuclear Safety Technology

²University of Tuscia - Department of Economics, Engineering, Society and Business Organization (DEIm)

³University of Rome "Tor Vergata" - Industrial Engineering Department

 $^{^4}$ Eindhoven University of Technology - Science and Technology of Nuclear Fusion Group / Internship ENEA

Introduction

Liquid metals experiments: lesson learned

Liquid Metal Divertor (LMD) design proposal

The Divertor Tokamak Test facility

Conclusion

Introduction

Introduction: power exhaust challenge

One of the main challenges in the European fusion roadmap is to design a power exhaust system able to withstand the large loads expected in the divertor of a future fusion power plant.

Actual strategy:

- development of plasma facing components
- selection of the divertor geometry and of the magnetic flux expansion
- removal of plasma energy before it reaches the target via impurity radiation
- \bullet recycling and increase of density, lowering the temperature close to the target \to detached regime

"A reliable solution to the problem of **heat exhaust** and helium removal is one of the main challenges in realising magnetic confinement fusion."

European Research Roadmap to the Realisation of Fusion Energy - 2018

Introduction - Motivations

Why study liquid metals in a tokamak environment?

- Liquid Metals (LM) are self-healing/renewable plasma-facing material
- LMs are less sensitive/immune to the neutron damage
- LM can be considered a long lifetime plasma-facing component
- Vapour shielding effect against (e.g. fast transient) increasing heat load

Introduction: Liquid metals in Tokamaks

Many subsystems need to be combined into an integrated component

Introduction: Operative window

Most relevant LMs and their vapour pressure

 The evaporative flux is one of the main issue for the steady state operation

D.W. Coenen et Phys. Scr. **T159** (2014) 014037]

Liquid metals experiments: lesson learned

LM experiments: possible approaches

LMs in a fusion reactor, flowing or not flowing?

Flowing

Static

Static LM approach

Take it static

Vapor box

- Heat delivered out of the plasma
- Evaporation of many I/s required (Li?)
- Plasma formation on isolated chambers?
- Alignment issues
- First wall protection?

CPS-based
Capillary Porous System

- Particle and power exhaust
- Plasma Contamination
- Material lifetime
- Neutron activation
- Target compatibility

Static LM - Capillary Pore System - CPS

Capillary pressure can prevent splashing and droplet formation

CPS capillary pressure Pc is determined as:

- θ wetting angle $r_{\rm eff}$ CPS pore radius
- σ surface tension

CPS: simulations vs experiments

Wetting test

Modified Lucas-Washburn (MLW) equation plotted for **liquid tin**: curves are plotted using different values of the pore radius $(300\mu m \text{ to } 30\mu m)$ Maximum equilibrium height increases for decreasing pore radius.

ENEN

Recent experiment

Several experiment in EU are investigating and testing CPS technology

- Exposure of different CPS in Magnum-PSI ¹
- Test in the OLMAT (Optimization of Advanced Liquid Metal Targets) facility ²
- \bullet Experiements in COMPASS with a small CPS in the divertor region 3
- Exposure of CPS on GLADIS and ASDEX-U (using divertor manipulator)

 $^{^3}$ Overview of power exhaust experiments in the COMPASS divertor with liquid metals, R.Dejarnac et al.

¹Reducing tin droplet ejection from capillary porous structures under hydrogen plasma exposure in Magnum-PSI, J.G.A. Scholte et al.

²Design and Testing of Advanced Liquid Metal Targets for DEMO Divertor: The OLMAT Project, D. Alegre et al.

Liquid Tin Limiter experiments

Liquid tin limiter tested for the first time in a tokamak environment

- Flexible and easy layout
- Operative temperature windows have been extensively studied
- Survived with no damage at all hundreds shots, tens disruptions

Prevent tin corrosion

- Tin corrosive attack is very aggressive
- W is compatible up to high temperature
- Structural elements have to be protected
- Several deposition strategies are under investigation

PoliMI team contribution

DCMS HiPIMS 220 rm 200 rm 200 rm 200 rm

Liquid Metal Divertor (LMD) design proposal

Cooling the static LM PFC

Thermal resistance, R_t , is a key parameter. At the steady state we can consider:

$$Q = \frac{T_{surf} - T_{coolant}}{R_t}$$

- LM allow to reduce the thickness $O(mm) o lower R_t$
- Different cooling system are under study
 Low surface temperature is important to avoid evaporation

Proposal for a Liquid Metal Divertor

The *elementary liquid metal units* can fit the standard DEMO cassette scheme.

Each liquid metal elementary unit should be provided by:

- Coolant
- LM reservoir and refill line
- Heating system
- Anti-corrosion layer

LMD proposal: cross section

Water hydraulic parameters $T_{bulk} = 140$ °C

p= 5 MPa v= 12m/s

IAEA Headquarters - 4th TMDC

LMD proposal: thermal analysis

Heat flux = 10 MW/m^2

Heat flux = 20 MW/m^2

Tin evaporation is negligible because the CPS surface temperature is sufficiently low

LMD proposal: W70-Cu30 advanced material

W Monoblock

$$T_{bulk} = 120^{\circ}C$$
 $v = 12^{m/s}$
 $p = 40 \, bar$
 $D_{int} = 12 \, mm$
 \downarrow
 $CHF 45.3 \, MW/m^2$
 \downarrow
 $CHF \perp PFC$
 $f_p = 1.7$
 $26.8 \, MW/m^2$

CHF margin 1.33

LMD (CuCrZr)

$$T_{bulk} = 140^{\circ}C$$
 $v = 12^{m/s}$
 $p = 50 \, bar$
 $D_{int} = 8 \, mm$
 \downarrow
 $CHF40 \, MW/m^2$
 \downarrow
 $CHF \perp PFC$
 $f_p = 1.38$
 $28.5 \, MW/m^2$

CHF margin 1.42

LMD (W-Cu)

$$T_{bulk} = 120^{\circ} C$$
 $v = 12^{m/s}$
 $p = 50 bar$
 $D_{int} = 8 mm$
 \downarrow
 $CHF46MW/m^2$
 \downarrow
 $CHF \perp PFC$
 $f_p = 1.42$
 $32.6MW/m^2$

CHF margin 1.6

Small scale mock-up

Starting from the FTU Liquid Metal Limiters experience:

- static CPS approach
- enhanced cooling capability
- easy and flexible design
- thermal analysis and EM calculation have been performed

Mock-up - work in progress

Two small scale mock-ups have been manufactured (CuCrZr and W70-Cu30).

A few steps are still missing:

- choice for the W coating technique - reliability on complex geometry is mandatory
- assembly including wetting

The Divertor Tokamak Test facility

DTT - divertor overview

The DTT Divertor: flexibility to test several magnetic configurations and alternative PFC such as liquid metals

See An overview of the conceptual design of the plasma-facing components of the DTT divertor
Giacomo Dose - Poster session II

DTT - divertor technological tests

Four location devoted to technologies further investigation

Easily accessible and removable: extraction of the central cassette without removing pipes of the two adjacent.

Preferential location eventually supplied by a dedicated cooling system has been allocated.

Conclusion

Conclusion

- LM seems a viable alternative PFC solution
- Recent experiment are investigating LMs PFC in the risk mitigation framework
- The LM community is growing

THE 7TH INTERNATIONAL SYMPOSIUM ON LIQUID METALS APPLICATIONS FOR FUSION (ISLA-7)
CHUBU UNIVERSITY, KASUGAI, AICHI, JAPAN
DEC. 12TH -DEC. 16TH, 2022

Future work

- Finalizing the mock up assembly
- Test in linear device the technological aspects
- Test in an integrated plasma scenario

enea.it

