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Wendelstein 7-X island divertor under

experimentally relevant operational 

space
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• Stable detachment[1,2] (with impurity seeding[3])

• Sufficient impurity retention in SOL

• Helium compression/exhaust [F. Reimold]

• Sufficient particle exhaust (density control) [T. 

Kremeyer]

The island divertor: A promising candidate for a future
stellarator reactor divertor?

Requirements for a reactor divertor:

[1] O. Schmitz et al, Nucl. Fusion 61 (2021) 016026

[2] M. Jakubowski et al, Nucl. Fusion 61 (2021) 106003

[3] F. Effenberg et al, Nucl. Fusion 59 (2019) 106020
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SOL impurity retention critical for

simultaneously maintaining both power 

exhaust and fusion performance in a 

reactor!



Island geometry of the W7-X SOL
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Island geometry of the W7-X SOL
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Island geometry of the W7-X SOL
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Parallel impurity transport in a tokamak vs island divertor
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[4] I. Y. Senichenkov et al, Plasma Phys. Control. Fusion 61 (2019) 045013

[5] P. C. Stangeby et al, Nucl. Fusion 60 (2020) 106005

[6] Y. Feng et al, Nucl. Fusion 49 (2009) 095002

[7] V. R. Winters et al, Nucl. Fusion (submitted)
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• Parallel impurity leakage to the LCFS is caused by impurity neutral ionization beyond the

impurity poloidal flow stagnation point[4,5] (dominant in tokamaks)

• Parallel impurity transport is expected to be benign for the island divertor at operationally

relevant densities[6,7]
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Taken from [4]



The EMC3-Eirene Code

EMC3 Braginskii Fluid 

Model

Eirene Neutral Gas 

Kinetic Model

Sources/Sinks

Plasma data

[10]

Input Parameters

𝑛𝑒,𝑠 = 1− 3 × 1019 m-3

𝑃𝑖𝑛𝑝𝑢𝑡 = 5 MW

𝐷⊥ = 0.5 m2s-1

𝜒𝑒⊥ = 𝜒𝑖⊥ = 1.5 m2s-1

Surface Geometry

Divertor

Toroidal Closure

Baffle

[9] Y. Feng et al, Contrib. Plasma Phys. 54 (2014) 426-431

[10] H. Frerichs et al, Nuclear Materials and Energy 18 (2019) 62-66

[11] P. C. Stangeby, Plasma Boundary of Magnetic Fusion Devices (2000)

• Solves 3D plasma/neutral solution in steady-state[9]

• Impurity transport parallel to magnetic field given by[11]:

• Perpendicular impurity transport anomalous, 𝐷𝑧⊥ = 𝐷𝑖⊥

𝑉𝑧∥ = 𝑉𝑖∥ +
𝜏𝑠
𝑚𝑧

𝛽𝑖 − 1
d𝑇𝑖
d𝑠

+ 𝛼𝑒
d𝑇𝑒
d𝑠

+ 𝑍𝑒𝐸∥ −
𝑇𝑖
𝑛𝑧

d𝑛𝑧
d𝑠

• 𝐹𝑟𝑎𝑑 comes from 4% chemically sputtered (𝐸𝐶0 = 0.03 eV) carbon

• Different impurity injected in trace approximation: C, N, Ne, He with

𝐸0 = 0.03 eV

• Impurities start with the same distribution as the main ion recycling

flux

• No drift effects included
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Confirmation of benign parallel transport across the entire
island SOL in experimentally relevant scenarios

thermal force

dominated

𝜑 = 12°

• There does not appear to be any significant

ionization source in thermal force dominated

regions

• How then, are impurities reaching the confined

plasma? 
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Despite expected benign parallel impurity transport, we still 
see impurity contamination in W7-X!
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• First measurements of nitrogen enrichment during

seeding indicate low core nitrogen content (~0.1%)[8], 

however:

• 𝑍𝑒𝑓𝑓 = 1.2 − 1.5 at low 𝑓𝑟𝑎𝑑, increases to >2 with

impurity seeding[3]

Image adapted from [3]

[8] F. Henke, Master‘s Thesis

[3] F. Effenberg et al, Nucl. Fusion 59 (2019) 106020

How do impurities leak to the confined

plasma in the island divertor? 



𝑫𝒛 scan on a fixed plasma background reveals perpendicular
transport as dominant leakage mechanism
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• Outward/inward radial movement of source is an accurate indicator for when retention

improves/degrades

• Inward movement of source → less geometrical distance to LCFS → lower retention

Ionization source changes plays a role in retention by bringing
impurity ionization closer to the LCFS/island O-Point
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Tuning the island size

• Increasing island size could improve impurity retention[12]

So, what knobs can we turn to minimize impurity leakage in a 
future reactor island divertor?
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[12] Y. Feng et al, Nucl. Fusion 56 (2016) 126011
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Image taken from [12]Icc=0kA Icc=2.5kA

Connection Length [m]

(hard to disentangle island size effect vs

connection length effect, possible to

isolate with specific magnetic

configurations?)

Ip=-845A, Icc=1.5kA

Icc=3.1kA

Both configurations to be tested in this current experimental phase!



Tuning the island size

• Increasing island size could improve impurity retention[12]

Tuning island rotational transform

• Decreasing 𝐿𝑐 (increasing island rotational transform Θ) in the island allows access to a higher

recycling regime – larger SOL density requires lower impurity content for similar radiation levels

• Optimum rotational transform to keep benign parallel transport/high divertor density?

So, what knobs can we turn to minimize impurity leakage in a 
future reactor island divertor?
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Tuning the island size

• Increasing island size could improve impurity retention[12]

Tuning island rotational transform

• Decreasing 𝐿𝑐 in the island allows access to a higher recycling regime – larger SOL density requires

lower impurity content for similar radiation levels

• Optimum rotational transform to keep benign parallel transport/high divertor density?

Modification of divertor geometry

• Closing the divertor would prevent impurity neutrals from escaping to island O-point region/keep them

further from LCFS (reduces magnetic flexibility in future)

Island Elongation? 

So, what knobs can we turn to minimize impurity leakage in a 
future reactor island divertor?
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Outlook: Looking to the next experimental campaign

Extrinsic Nitrogen Puffs (no recycling)
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Experimental Validation of Modeling Results Upcoming!

• Comparison of retention magnitude of different species using

LR spectroscopy

• Is the flow stagnation region the dominant leakage

mechanism? Direct fueling of this area possible

• Magnetic configuration effects (island size/connection length)

• Synthetic diagnostics help us more directly compare

simulation and experimental results
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Synthetic Image (EMC3): Divertor Spectroscopy



Parallel impurity transport is benign in the W7-X island divertor

Perpendicular transport is the limiting factor for impurity retention in the W7-X island SOL

• Impurities leak to the LCFS via perpendicular transport across flow stagnation region

• Ionization length still affects impurity retention by changing distance between ionization front and

LCFS

Several avenues to explore to optimize the impurity retention of the island divertor concept

• Tuning island size, rotational transform, shape and target geometry are all possible options for

future devices

Simulation validation is still ongoing and in its beginning stages!

Summary

4 TH  IA E A TE C H N IC A L M E E TIN G O N  D IV E R TO R C O N C E P TSM A X - P L A N C K - IN S TITU T F Ü R  P L A S M A PH YS IK  |  V.  R .  W IN TE R S  |  0 8 . 11 . 2 0 2 2 2 4



Back-up Slides
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A qualitative note on drift effects

𝒗𝜽,∥

𝒗𝜽,∥

𝒗𝜽,𝑬×𝑩

stagnation 

point

[IMG] D. M. Kriete

net impurity

movement

~0?

• Poloidal 𝐸 × 𝐵 drifts shift location of max pressure along field line, poloidally

shifting the main ion flow stagnation point[13]

• Additionally, Poloidal 𝐸 × 𝐵 drifts affect impurities by moving them into (or out of) 

the flow stagnation region

• Qualitatively, there should be a location in the island where the 𝑣𝜃,𝐸×𝐵 exactly

mitigates the poloidal projection of the parallel impurity flow 𝑣𝜃,∥

• Long impurity dwell times in this location – consequences for transport?

• Radial drift effects not yet clear

[13] D. M. Kriete et al, Nucl. Fusion (submitted)
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𝑫𝒛 scan on a fixed plasma background reveals perpendicular
transport as dominant leakage mechanism
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Total Helium DensityTotal Nitrogen Density

𝐷𝑧 = 0.5 m2s-1

𝐷𝑧 = 0.01 m2s-1

𝐷𝑧 = 0.001 m2s-1

~ factor 50 decrease in 

LCFS density for both

N and He

flow stagnation regions

gather impurities



Why is Helium better retained than other impurities at low
density?

• Parallel impurity flow velocity approximated by:

• Both 𝛽𝑖, 𝜏𝑠/𝑚𝑧 depend on “reduced mass”:  ൗ𝑚𝑧
𝑚𝑧+𝑚𝐻

• Both friction and ion thermal fluid forces represent collisional processes: 

similar mass of Helium and Hydrogen leads to more efficient momentum

transfer→ reduced ion thermal force, increased friction

• Lower flow velocities → longer impurity dwell time → more perpendicular

transport → lower retention

𝑉𝑧∥ ≈ 𝑉𝑖∥ + 𝛽𝑖 − 1
𝜏𝑠
𝑚𝑧

d𝑇𝑖
d𝑠
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