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Introduction and Outline

Why develop a self-consistent model for edge plasma with active wall?
• It may offer new insights on boundary plasma physics, for fusion devices and beyond
• It may help us understand better plasma-material interactions for transient phenomena
• It may help us find new approaches for solving the divertor problem

How is it implemented?
• Coupling of edge plasma code UEDGE with active wall code FACE
• Implemented with multi-physics framework IPS

What are the results?
• Coupled UEDGE and FACE provide a simulation model for transient PMI processes
• Modeling of tokamak strike point sweeping shows potential for dealing with divertor heat 

exhaust challenge
• Modeling of ELMs points to potential role of wall absorption/outgassing
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Part I – Implementation of UEDGE and FACE 
coupling for self-consistent modeling of plasma 
dynamics with active wall
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UEDGE is an established 2D fluid simulation model for 
boundary plasma transport

plasma density

ion parallel momentum

charge conservation

ad-hoc radial transport

neutral density

sheath boundary cond.

neutral parallel momentum

ion thermal energy

*T. D. Rognlien et al., J. Nucl. Mater. 196–198, 347 (1992)

electron thermal energy
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FACE is a 1D simulation model for 
particles and thermal energy transport in material wall

Thermal energy transport

Particle species transport

R.D. Smirnov et al.,
FUSION SCIENCE AND 
TECHNOLOGY · v 71 (2017) 

FACE implements an “active wall” model – a material wall model that accounts for 
accumulation and release of plasma particles and heat stored in the wall
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UEDGE-FACE coupling implementation  #1

• Using 2D plasma domain 
for UEDGE

• Using 1D wall domain for 
each copy of FACE

• Running multiple FACE 
processes in parallel

• Alternating time steps in 
UEDGE and FACE

• A copy of FACE is set up at 
each grid point on wall boundary
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UEDGE-FACE coupling implementation  #2

• Two coupled “black boxes” A and B for “plasma” and “wall”

• Explicit time-stepping strategy:

• Update box A w/ “frozen” box B

• Next, update box B w/ “frozen” box A, etc.

• Closely related to “fractional step method”, “operator splitting method”, etc.

• Mathematical roots of it lie in the Zassenhaus formula for linear operators

• For our system of two coupled “black boxes”, linearized evolution operator is the 
sum of two operators: #1 acting on Box A, and #2 acting on Box B

• For convergence, need the splitting time step shorter than physics timescales

etc.
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UEDGE-FACE coupling implementation  #3

• Multi-physics code coupling framework IPS is used for implementation 
of UEDGE-FACE coupling

• IPS provides tools for managing complex workflows with multiple 
parallel processes

• Our IPS based application developed for this project is called IPSUF 
(IPS+UEDGE+FACE), and it is hosted on GitHub

W.R. Elwasif et al., 18th Euromicro
Conference on Parallel, Distributed and 
Network-based Processing, (2010), pp. 
419-427. 
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Part II – Using coupled UEDGE and FACE for
modeling of strike point sweeping in tokamak 
divertor
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Strike point sweeping has been proposed for 
mitigation of divertor heat loads in a tokamak

[1] Jacyuinot et al., Fusion Eng. Design 30 67-84 (1995) 

[2] Ambrosino et al., IEEE Trans. Plasma Science, v. 36, n. 3, (2008) 

[2] Silburn et al., Phys. Scr. T170, 014040 (2017) 

[4] Kuang et al., J. Plasma Phys., vol. 86, 865860505 (2020)

[5] Soukhanovskii – private communication (2021)

Figure from Ref. [1]

• Strike point sweeping was studied 
experimentally since 1990s [1-3]

• Proposed for future experiments [4-5]
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UEDGE rectified edge plasma setup used for strike point sweeping study

• Simplified geometry but captures main features of X-point divertor
• Boundary conditions set to mimic divertor in a high-power tokamak
• Peak power flux on target plate ~50 MW/m2

• Power flux profile width on the plate~1 cm

FACE Te (steady state)

R[m]
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]
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12
Umansky et al, IAEA TM – Chart 12

FACE model setup is focused on hydrogen transport 

• Material: tungsten-like properties, 1 cm thick
• Species included: hydrogen (“free”, i.e., interstitial, and “trapped”)

• Reactions included: trapping and thermally activated de-trapping of hydrogen 
in/from the traps; at the surface molecular desorption of hydrogen

• Trapping: 3 kinds of traps for hydrogen in material with de-trapping energies 0.9 
eV, 1.35 eV and 1.95 eV and uniform concentrations of 0.1 at.%, 0.025 at.%, 
and 0.0125 at.%

• Thermal transport: 1D heat conduction equations solved on separate grid
• Boundary conditions: on back side of plate, T=500 K, zero hydrogen flux Γ=0
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Implementation of divertor strike point sweeping, 
using coupled UEDGE & FACE

• Plasma and wall domains communicate via 
fluxes of particles and energy

• Γij is the flux between ith cell on plasma side 
and jth cell on wall side

• Relative radial displacement of plasma and 
wall domains changes distribution of fluxes Γij

x, radial

y, 
po

lo
id

al

• Our wall model is 1D, it neglects fluxes along the wall surface
• That’s appropriate if perturbations of parameters in the wall domain are 

confined to a narrow layer on the target plate surface: Lx << Ly
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“Temperature waves” analysis justifies quasi-1D treatment

• Consider a 1D diffusion equation with sinusoidally driven BC
𝜕𝜕
𝜕𝜕𝜕𝜕
𝑇𝑇 = 𝜒𝜒 𝜕𝜕2

𝜕𝜕𝑥𝑥2
𝑇𝑇

𝑥𝑥 ∈ 0,∞ ; 𝑇𝑇 𝑥𝑥 = 0 = 𝑇𝑇0𝑒𝑒−𝑖𝑖𝜔𝜔𝜕𝜕; 𝑇𝑇 𝑥𝑥 = ∞ = 0

• Once the transients die out, solution is
𝑇𝑇 𝑥𝑥, 𝑡𝑡 = 𝑇𝑇0𝑒𝑒−𝑖𝑖𝜔𝜔𝜕𝜕+𝑖𝑖𝑖𝑖𝑥𝑥, where 𝑘𝑘 = ⁄𝑖𝑖𝜔𝜔 𝜒𝜒

• For tungsten (χ~50 mm2/s at T=300 K)
- ν=10 s-1 => Lx ~ 5 mm
- ν=1 s-1 => Lx ~ 15 mm

Decaying wave

• Assuming realistic sweep parameters: ν~1-10 Hz, amplitude Ly ~ 10 cm
• Plate temperature perturbations are confined to ~1 cm layer on the surface
• Transport processes in the plate can be treated as a quasi-1D problem
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Time evolution with coupled UEDGE & FACE uses optimal time step

• Case Box2g
- Sweep parameters: frequency 10 Hz; amplitude 10 cm
- Coupling run parameters: dt=2e-4s, Nt=1e4, total time=2s

• Convergence in dt to ~1e-2% • There is sweet spot for coupling step dt

time [s]

T[
K]

Twall at reference point

blue – w/ dt=10-4 s
red – w/ dt=2x10-4 s
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physics-time [s] vs. wall-time [hrs]
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Oscillatory regime is established in target plate;
temperature and free hydrogen density follow sweeping

• Without sweeping => close to W melting point
• With sweeping => under 1500 K – problem solved?

• Variation due to hydrogen flow?
• Or de-trapping of trapped hydrogen?
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Escaping flux of hydrogen (outgassing) exists only in 
the first 1-2 nm of target plate surface, at ion implantation depth

• Temporal variation of free hydrogen 
density in the plate volume is not 
caused by hydrogen ions/atoms 
entering/exiting the plate

• It is caused by trapping and de-
trapping of hydrogen

• Beyond the first 1-2 nm, hydrogen 
transport in the plate is too slow to 
play a role on considered time 
scales
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Part III – Using coupled UEDGE and FACE for
modeling of ELM cycle in tokamak
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Experimental evidence points to importance of 
hydrogen absorption/outgassing by the wall in ELM crash/recovery

• During ELM crash 5% of plasma density is lost
• That amounts to ~0.5e20 ions
• Volume outside LCFS ~1 m3

• Average gas density outside LCFS << 1e20 m-3

• Not enough neutrals to rebuild core density?

Figures w/ DIII-D data from 
Fenstermacher et al. 
JNM 438 (2013) S346–S350
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Model setup for ELM simulations uses 
periodic bursts of heat  and particles into SOL

• FACE is coupled w/ UEDGE on outer wall & target 
plates, in realistic X-point geometry

• ELMs modeled in UEDGE as short 3 ms bursts of heat 
and density flux into SOL, repeating every 30 ms

• UEDGE setup
- Mid-size high-power tokamak parameters
- Core boundary: n=2e20 m-3
- At ELM crash: P=1 GW, χ,D=15 m2/s; otherwise
- P=2 MW, core χ,D=0.1 m2/s, SOL χ,D=1.0 m2/s, 

• FACE setup
• Tungsten-like material properties, 1 cm thick
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Temperature in material surfaces is affected by ELM within ~100 µm depth

• On target plates, material temperature spikes within ~1 cm from strike points
• Main wall heating is comparatively low and uniform
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Hydrogen retention in material surfaces is affected by ELM within ~1 µm depth

• At ELM start, retained deuterium amount increases along all surface
• Near strike points, hydrogen is faster depleted due to material heating

Inner plate lg(nH [m-3]) Outer plate lg(nH [m-3])Outer wall lg(nH [m-3])

Length along plate, m Length along plate, mLength along wall, m
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Variation of hydrogen retention in material surfaces 
throughout ELM cycle comparable to edge plasma contents

• Stationary oscillation have not been 
achieved yet (long simulations)

• Extrapolating from several ELM cycles so 
far, variation of hydrogen inventory in the 
walls ~1e21 particles throughout ELM 
cycle

• Number of hydrogen particles in edge 
simulation domain ~1e21 

• Points to potentially important role that wall 
storage & outgassing play in mass balance Time [s]

N
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Particle balance
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Summary & Conclusions

• UEDGE and FACE codes coupled using IPS framework enable 2D plasma 
modeling with dynamic recycling on all wall surfaces

• Application of the coupled model to strike point sweeping, in a high-power 
tokamak, shows that for realistic sweep parameters the temperature on the 
tungsten target plate can be maintained below 1500 K

• Modeling of large ELM pulses for high-power mid-size tokamak conditions shows 
that hydrogen density profiles in material are affected up to depth ~1 µm, while 
temperature profiles are affected up to ~100 µm.

• Simulations results point to significant potential role played by wall hydrogen 
storage & outgassing in mass balance during ELMs
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Backups
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Strike point sweeping leads to modest changes on the plasma side

From plasma point of view, strike point sweeping  target plate moves periodically
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From the plasma point of view, in our model strike point sweeping means that 
target plate is moving radially

• There is some variation of 
plasma parameters, caused 
by strike point sweeping 
(outgassing) – but not very 
dramatic
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Density of trapped hydrogen is weakly affected
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