Contribution ID: 99

Type: Oral

Simulation studies of He and particle exhaust in detached divertor for JA DEMO design

Monday, 7 November 2022 11:50 (20 minutes)

SONIC divertor code enables simultaneous calculations of seeding impurity (Ar) and fusion product (He ash) transport. He exhaust has been investigated in JA DEMO, where exhaust power ($P_{out} = 250$ MW), ion flux ($\Gamma_{out}^{D} = 1 \times 10^{22} \text{s}^{-1}$) and He ion flux ($\Gamma_{out}^{He} = 5.3 \times 10^{20} \text{s}^{-1}$, corresponding to 1.5 GW fusion power) were given at the core-edge boundary. Plasma diffusion coefficients of $\chi = 1 \text{ m}^2 \text{s}^{-1}$ and D (plasma and impurity ions) = $0.3 \text{ m}^2 \text{s}^{-1}$ were the same as "standard" values in the ITER simulation. Peak heat loads at the inner and outer divertor targets were reduced less than 10 MWm⁻² for a reference series of the radiation fraction in the SOL and divertor, i.e. $f_{rad}^{div} = (P_{rad}^{sol} + P_{rad}^{div})/P_{sep} \sim 0.8$. He concentration ($c_{He}^{edge} = n_{He}/n_i$) averaged at the plasma edge near the midplane ($r^{mid}/a_p = 0.96$ -0.98) was evaluated in the detached divertor condition; fully and partially detachment in the inner and outer divertors, respectively. c_{He}^{edge} was reduced from 6 % to 4 % with increasing n_e^{sep} from 1.8×10^{19} to $2.3 \times 10^{19} \text{m}^{-3}$ by D₂ gas puff (keeping the same $f_{rad}^{div} \sim 0.8$ by reducing Ar seeding rate), while the partial detachment was extended. In the divertor, in-out asymmetry of c_{He}^{div} was seen (2-3 times); c_{He}^{div} in the upstream of the inner divertor was enhanced to larger than 10 %, maybe caused by large thermal force (parallel ion temperature gradient) on He ions in the fully detached condition. The in-out asymmetry were reduced near the separatrix of the main SOL.

Influences of reducing χ and D on the He exhaust were investigated ($\chi = 0.5$, $D = 0.15 \text{ m}^2 \text{s}^{-1}$), compared to above "standard"case. Radial gradient of the plasma density profile was increased particularly in SOL, and both n_i^{sep} and n_e^{sep} were increased from 1.6×10^{19} and $2.1 \times 10^{19} \text{m}^{-3}$ to 2.4×10^{19} and $2.9 \times 10^{19} \text{m}^{-3}$, respectively. Since $n_{He}^{sep} \sim 1 \times 10^{18} \text{m}^{-3}$ and $n_{Ar}^{sep} \sim 2 \times 10^{17} \text{m}^{-3}$ near the separatrix, n_e^{sep} was ~25% larger than n_i^{sep} . Radial gradient of the temperature profile was increased near and inside the separatrix. c_{He}^{div} was increased to ~15% and ~10% in the inner and outer divertors, respectively. On the other hand, $c_{He}^{edge} = 7.9\%$ was slightly increased. Since plasma performance such as P_{fus} and HH_{98y2} for the JA DEMO is based on system code results with $c_{He} = 7\%$ in the main plasma, the plasma design is consistent with above simulation results, but it is necessary to avoid higher c_{He}^{edge} .

For the fuel particle exhaust, neutral and gas pressures (P_{D0} , P_{D2}) in the divertor were evaluated at exhaust slots of the dome and in the sub-divertor. For the "standard"case (without include neutral-neutral collisions, NNC), total neutral pressure ($P_D = P_{D0} + P_{D2}$) was increased from ~2 to ~3 Pa at the exhaust slots, and from ~1 to ~1.8 Pa in the sub-divertor, with increasing D₂ puff rate from 4.8×10^{22} to 9.6×10^{22} D/s⁻¹. Effects of NNC on the particle exhaust and detachment are shown.

Speaker's Affiliation

National Institutes for Quantum, Science and Technology (QST), Naka Institute

Member State or IGO

Japan

Primary author: Dr ASAKURA, Nobuyuki (National Institutes for Quantum, Science and Technology (QST), Naka Institute)

Co-authors: Prof. HOSHINO, Kazuo (Graduate School of Science and Technology, Keio University); Dr HOMMA, Yuki (National Institutes for Quantum, Science and Technology (QST), Rokkasho Institute); Dr SAKAMOTO, Yoshiteru (National Institutes for Quantum, Science and Technology (QST), Rokkasho Institute); Dr TOKUNAGA, Shinsuke (National Institutes for Quantum, Science and Technology (QST), Rokkasho Institute)

Presenter: Dr ASAKURA, Nobuyuki (National Institutes for Quantum, Science and Technology (QST), Naka Institute)

Session Classification: DEMOs and Next Step Facilities

Track Classification: Divertors for DEMO and Next-Step Facilities