

Simulation studies of He and particle exhaust in detached divertor for JA DEMO design

<u>Nobuyuki Asakura</u>¹, K. Hoshino², Y. Homma³, Y. Sakamoto³, Shinsuke Tokunaga³, and Joint Special Design Team for Fusion DEMO

National Institutes for Quantum Science and Technology (QST), Naka
 Graduate School of Science and Technology, Keio University, Hiyoshi, Yokohama
 QST, Rokkasho

4th IAEA Technical Meeting on Divertor Concepts, IAEA Headquarters, Vienna 7-11 November 2022

1. Introduction:

Power exhaust concept for JA DEMO divertor SONIC development

2. Influence of radiation loss and diffusion on power exhaust

- 3. Particle and He exhaust study in DEMO divertor
- 4. Summary: Simulation of JA DEMO divertor performance

DEMO DESIGN JOINT SPECIAL TEAM

1. JA-DEMO design and power exhaust concept Large power exhaust: $P_{sep}/R = 30-35$ MW/m, is required

-3-

Power exhaust concept of JA-DEMO design (JA-DEMO 2014)[1,2]: System code predicted *Greenwald density* (n^{GW} : 0.67x10²⁰m⁻³) is lower than ITER \Rightarrow Impurity seeding is restricted up to n_{Ar}/n_e = 0.25% due to fuel dilution: to obtain Fusion power (P_{fusion} = 1.5GW) and Net electricity output ($P_{e-net} \sim 0.25$ GW), and β_N (3.5) and Bootstrap-fraction (0.6) with relatively high HH_{98y2} (~1.3).

JA-DEMO higher- κ proposal[3]: increasing κ_{95} from 1.65 to 1.75 for the same R_p , a_p , B_t and q_{eff} , which increases I_p (12.3 \Rightarrow 13.5MA) and n_{GW} (0.67 \Rightarrow 0.73x10²⁰m⁻³). $\Rightarrow n_{Ar}/n_e$ and Radiation loss fraction $(f_{rad}^{main}=P_{rad}^{main}/P_{heat})$ are increased.

Development of SONIC V4 and recent progresses

- Modeling framework using MPMD (Multiple-Program Multiple-Data) approach and MPI (Message Passing Interface) data exchange scheme has been developed for
- (1) Each code can be independently developed, added and replaced.
- (2) CPU number for each code can be adjusted to optimize performance.
- \Rightarrow Plasma exhaust of DEMO divertor, incl. Ar and He transports, has been simulated.

(1) Restructured SONIC code with MPMD framework

(2) Improved numerical efficiency for multi-impurity calculation

Recent progresses of modelling to evaluate following effects under the DEMO condition:

- Kinetic models (thermal force on impurity transport and flux limiter for ion conduction) for low collisionality SOL in DEMO were developed [4, 5].
- Elastic collision model of D-D, D-D₂, D₂-D₂, D-He is incorporated; improvement in progress[6]
- Self-consistent photon transport simulation was performed for SlimCS[7] and JA DEMO.
 Introduction of drifts to SOLDOR is considered.

[4] Y. Homma, et al, Nucl. Fus.60 (2020) 046031, [5] Y. Homma, et al, Nucl. Fus.62 (2022) 045020.
[6] K. Hoshino, et al., PET-18 (2021) [7] K. Hoshino, et al., Contrib. Plasma Phys., 56 (2016) 657.

[10] Asakura, et al., Processes 10 (2022) 872.

Detachment is produced: q_{target} **is lower than 10 MWm⁻²** Outer peak- q_{target} appears in *"partially attached"* region -6-

Inner target: peak q_{target} ~4 MWm⁻², where ionization still occurs at $T_e^{div} = T_i^{div} \sim 1 \text{ eV}$. \Rightarrow Surface recombination is a dominant Volume-recombination is not significant. Significant reduction in ion flux (seen in experiments) is *not* simulated. Outer target: peak q_{target} ~5 MWm⁻² is seen <u>at "attached" region (r^{div} ~ 15cm</u>). \Rightarrow Plasma heat load is dominant, and Radiation load is also large.

Divertor operation in low n_e^{sep} (= $n^{\text{GW}}/3 \sim n^{\text{GW}}/2$) ⁻⁷⁻ q_{target} is reduced (≤ 10 MWm⁻²) in *Both reference cases* ($f_{\text{rad}}^{\text{div}} \sim 0.8$)

Severe cases were studied: high P_{sep} ~283MW(f_{rad}^{*} div~0.8), low f_{rad}^{*} over 0.7 (P_{sep} ~235/283 MW)

- \Rightarrow Decreasing detachment width and increasing T_i and T_e of the attached plasma:
- q_{target} is increased, and margin of power handling ($\leq 10 \text{ MWm}^{-2}$) is reduced.
- q_{target} is further increased \Rightarrow higher $n_{\text{e}}^{\text{sep}}$ is required both for both *cases*.

Divertor operation: smaller diffusion coefficients -8-Influences of χ and D become large for *lower* radiation fraction

Peak- q_{target} for DEMO higher- κ and DEMO 2014 cases ($f_{\text{rad}}^* \sim 0.8$):

• Detachment region is reduced from 10 to 7 cm, and T_i^{div} , T_e^{div} at attached region increased $\Rightarrow \text{peak-}q_{\text{target}}$ is increased, but acceptable for higher- κ , DEMO 2014($n_e^{\text{sep}} > 2.3 \times 10^{19} \text{ m}^{-3}$).

Low $f_{rad}^{div} \sim 0.67$ cases: divertor operation is difficult in the Low n_e^{sep} (2-3x10¹⁹ m⁻³).

3. Particle and He exhaust study in DEMO divertor -9-

He ion flux equivalent to *P*_{fusion}: 1.5GW is exhausted from *core-edge boundary*

Simulation parameters for *He exhaust study*:

- He flux ($\Gamma_{out}^{He}=5.3 \times 10^{20} \text{ s}^{-1}$) is exhausted, corresponding to P_{fusion} =1.5GW.
- D+ flux ($\Gamma_{out}^{D+}=1x10^{22} \text{ s}^{-1}$) outflux is assumed as pellet fueling level: $\Gamma_{out}^{He}/\Gamma_{out}^{D+}$ ~5%.
- Particle diffusion coefficient ($D = 0.3 \text{ m}^2\text{s}^{-1}$) is same for D, He and Ar (same as ITER calc.).
- Simple diffusion process model (No neoclassical transport and pinch) is used inside separatrix.
- Elastic collision model of D⁰-D⁰, D⁰-D₂, D₂-D₂, D⁰-He, D₂-He was NOT applied in this series.
- Reflector angles were increased from 60° to (in)90°/(out)80° (for neutron protection)

Neutral/molecular collision effects on pressure profile Neutral-neutral elastic collision (NNC) will increase P_{D2} in sub-divertor -10-Database of neutral-neutral elastic collision (NNC) was newly PD0&PD2 (Pa) D2: w/o NNC calculated [12, 13] in recent studies of detachment and exhaust: 3.0 2.75 2.5 2.25 Collision rates and momentum exchange rates were evaluated from 2.0 1.75 differential cross-sec. database for D_0 - D_0 , D_0 - D_2 [14] and D_2 - D_2 [15]. $z_{(m)}$ 1.5 ~2.0 divertor 1.25 • NNC model is rather theoretical expression compared to those in EIRENE. 1.0 0.5 dome ~1.4 Effect of NNC model on D₂ gas pressure was significantly observed in the sub-divertor (2 times larger). punping PD2~0.9Pa ~0.5Pa • P_{D2} at the private and exhaust slots were also increased. ⁷ R (m) 6 8 Mesh#161215 But NNC model was NOT applied in this work. D2: incl. NNC **P**_{D0} distribution in private and sub-divertor, and detachment:

~2.2

6

dome

Pn2~1.7Pa

⁷ R (m)

divertor

~0.6Pa

pniqmu

- P_{D0} was rather decreased at *Inner private* (2.6 \rightarrow 2.0Pa) due to D_0-D_0/D_0-D_2 collisions near the strike-point.
- P_{D0} was reduced at lower than P_{D2} at both exhaust slots.
- Reductions in target $T_{\rm e}$ and $n_{\rm e}$ were relatively small (10-15%).

- [14] P. S. Krstic et al., Atomic and Plasma-Material Data for Fusion 8 (1998) 1.
- [15] A. V. Phelps, J. Phys. Chem. Ref. Data 19 (1990) 653.

^[12] S. Tokunaga, et al., PSI22, P.3.105, May 2016, Rome, Italy.

^[13] K. Hoshino, et al., PET21, Session1-7, Sep. 2021, Remote

Inner and outer *q_{target}* vs divetor pressure

Neutral pressure (P_{D2}, P_{D0}) at the private boundary was used, similarly to ITER.
 But the pressure range was lower than ITER (~1/2)[16].0 1 2 3 4 5 6 7 8 (10²²Ds⁻¹)

[16] R. Pitts, et al., Nucl. Mater. Energy 20 (2019) 100696.

He ion and atom densities in plasma edge and divertor

-13-

He ion density (n_{Hez}) is significantly increased near the detachment front (between Ar radiation peak and D ionization front) due to recycling in the divertor:

- *n_{Hez}* is increased also at the private region *near X-point* (similar to D⁺ density).
- n_{Hez} ~1x10¹⁸ m⁻³ inside the separatrix ($r^{mid}/a=0.96-0.98$).
- He atom density (n_{He0}) in the divertor:
- n_{He0} is increased at the downstream of ionization front.
- n_{He0} is rather uniform in sub-divertor, and increased at exhaust route (E_{He} is reduced).

He concentration in detached divertor -14- $C_{He}^{edge} = 4-7\%$ similar to exhausting Γ_{He}/Γ_D : Accumulation of He is NOT seen.

With increasing gas puff rate, *detachment width* increases and *peak* q_{target} is reduced. He concentrations at SOL and plasma edge $(C_{He} = n_{He}/n_i)$ for $\chi = 1/D = 0.3 \text{ m}^2\text{s}^{-1}$ case:

- In-out asymmetry of C_{He} in SOL/divertor is 2-3 times, but decreasing near separatrix.
- $C_{He} = 4-7\%$ at plasma edge(smaller than SOL) \Rightarrow Accumulation of He is NOT seen.

Profiles of plasma and heat load at outer target:

midplane density and peak heat load

Effect of diffusion coefficients on He exhaust

 χ and D were reduced to half values: He concentration is acceptable.

-15-

χ and D were reduced to half values (0.3/0.15 m²s⁻¹):

- C_{He} (= n_{He}/n_i) increases to 10-14% (inner SOL), 9-11% (outer SOL) and near X-point (18%).
- C_{He} at plasma edge is increased from ~6% to 7-9%.

n_e^{sep} (midplane) is 25% larger than n_i^{sep} due to Ar and He ions (similar contributions).
 Effect of reducing χ and D: n_{He}/n_e profile changes inside the midplane separatrix: reduction from 5% (r^{mid}/a=1) to 4% (0.98) is enhanced from 6% to 3%.

Uniform $n_{\rm He}/n_{\rm e}$ =7% is assumed for JA DEMO design by system code: acceptable level

5. Summary: Simulation of JA DEMO divertor performance

Heat load and plasma detachment in a long-leg divertor (L_{leg} =1.6m) were evaluated for JA-DEMO 2014(P_{sep} = 283MW) and higher- κ (P_{sep} = 235 MW) in low SOL n_e^{sep} = 2-3x10¹⁹m⁻³.

Divertor operation (\leq 10 MWm⁻²) was determined with reducing f_{rad}^{*} or/and $\chi \& D$;

- Peak- q_{target} in outer divertor appeared *at detach-attach boundary*, and it was increased with decreasing partial detachment width and increasing the local- T_e^{div} and T_i^{div} .
- *Two references* (f_{rad}^* ~0.8) was acceptable; higher- κ case allows larger operation margin.
- Severe cases of reducing f_{rad}^{div} to ~0.7 or χ and D to half values; higher n_e^{sep} was required. Particularly, impact of reducing both χ and $f_{rad}^{*}^{\text{div}}$ was serious.

Simulation for particle and He exhaust has been developed;

- Neutral-neutral elastic collision (NNC) will increase particularly P_{D2} in the sub-divertor.
- Accumulation of He ion was NOT seen in the plasma edge: $(n_{\rm He}/n_{\rm e})^{\rm edge} \sim 4-5\%$ while increasing the partial detachment width.
- For reduced χ and D case, $(n_{\rm He}/n_e)^{\rm edge}$ is acceptable, while $C_{\rm He}$ was increased in SOL.

Some future activities and developments:

- Relationship between q_{peak} (and components) and $P_{\text{D2}}/P_{\text{D0}}$ is investigated.
- Benchmark of SONIC and SOLPS-ITER codes both for EU- and JA-DEMOs.
- Integration of transport codes, SONIC and TOPICS (1D, main plasma), is in progress.
- Renewing SOLDOR to incorporate drifts is considered; now debugging in slab-model.