Physics Basis and Design of Tungsten Divertor for CFETR

by

R. Ding, H. Si, X.J. Liu, C.F. Sang, G.Z. Jia, S.F. Mao, H. Xie, G.L. Xu, C.J. Li, I. Senichenkov, V. Rozhansky, Z.Y. Li, F.F. Nian, H. Li, H.L. Du, T.Y. Xia, N.M. Li, D.Y. Liu, Q.R. Zhou, Z.S. Yang, L. Wang, Y.D. Pan, H.Y. Guo, V.S. Chan, J.G. Li

Presented at the 4th IAEA Technical Meeting on Divertor Concepts, Vienna, Austria, Nov. 7-10, 2022

- Challenges and Requirements
- Considerations on CFETR Divertor Design
- Edge Modeling Results
- Effects of PFC Shaping and ELM
- Summary and Future Plans

CFETR aims to bridge the gaps between the fusion experimental reactor ITER and the demonstration reactor DEMO

Chinese Fusion Engineering Testing Reactor (CFETR) Missions

- Obtained burning Plasma for fusion power
- Steady-state operation for fusion energy
- Breeding tritium for T self-sustained

Major Radius R ₀	7.2 m
Minor Radius a	2.2 m
Elongation	2
Toroidal B Field B _T	6.5 T
Plasma Current I _p	14 MA
Duty Cycle	0.3-0.5

G. Zhuang et al., Nucl. Fusion 59 (2019) 112010

Plasma Exhaust Solution for CFETR Must Meet Requirements Beyond that of ITER

Material limits

- Divertor target heat load $\leq 10 \text{ MW/m}^2$
- Negligible divertor target erosion rate

Plasma limits

- Low impurity contamination
- Efficient He exhaust

Engineering limits

 Compatible with the firstwall and blanket

Parameters	Steady- State (SS)	Hybrid	ITER (Q=10)
P_{fus} (GW)	1.0	0.92	0.5
$P_{heat} = P_{\alpha} + P_{aux}$ (MW)	305	251	173
P ^{core} _{rad} (MW)	86	74	70
P _{sep} (MW)	219	177	103
P _{sep} /R (MW/m)	30	25	17

- Challenges and Requirements
- Considerations on CFETR Divertor Design
- Edge Modeling Results
- Effects of PFC Shaping and ELM
- Summary and Future Plans

Considerations on CFETR Divertor Design

- W-based materials for PFCs
- Magnetic configuration and the first wall geometry
 - High δ limited by the design of first wall and divertor (optimal δ ~0.42)
 - Optimal X-point for enough space of divertor and blanket
 - dRsep ~ 6 cm is selected to avoid the secondary separatrix touches the first wall

Considerations on CFETR Divertor Design

- W-based materials for PFCs
- Magnetic configuration and the first wall geometry
- Physics requirements
 - $P_{peak} \le 10 \text{ MW/m}^2$
 - $T_e \le 5-10 \text{ eV}$
 - $n_{e-sep} \le 3 \times 10^{19} \, m^{-3}$
 - $Z_{eff-ped} \le 3$
- Divertor configurations
 - Conventional (Different leg length)

Considerations on CFETR Divertor Design

- W-based materials for PFCs
- Magnetic configuration and the first wall geometry
- Physics requirements
 - $P_{peak} \le 10 \text{ MW/m}^2$
 - $T_e \le 5-10 eV$
 - $n_{e-sep} \le 3 \times 10^{19} \, m^{-3}$
 - $Z_{eff-ped} \le 3$
- Divertor configurations
 - Conventional (Different leg length)
 - Snowflake or XD not allowed

The Baseline Conventional Divertor Design

- Vertical targets for both divertor
 - Easier detachment near strike point
- A V-shape corner
 - Higher neutrals compression
- Long divertor leg length
 - Higher power radiation losses
- Two pumping slots on the Dome

OD Estimation of Divertor Peak Heat Flux

a^t	$\sum \frac{P_{sep}(MW)}{2} \approx $	$P_{sep}\sin\beta$	$f = \frac{(B_p / B_p)}{(B_p - B_p)}$	$')_u$
$\mathcal{Y}_{\perp, peak}$ ~	$\sim A_w(m^2)$	$\int 4\pi R_t \lambda_q^u f_{\rm exp}$	$J_{exp} - (B_p / B_p)$	\mathbf{S}) _t

Parameters	Steady-State	Hybrid	ITER (Q=10)
P _{sep} (MW)	219	177	103
β(°)	20	20	25
<i>R</i> _t (m)	7.1	7.1	5.6
λ_q^u (mm)	2	2	1
f _{exp}	3.5	3.5	3.0
$q_{per,peak}^t$ (MW/m2)	120	97	206

 λ_q^u Eich's scaling law

PRL 107 (2011) 215001

BOUT++ Simulation indicates that CFETR could have a Broadened Heat Flux Width

- Two different mechanisms determine radial transport and heat flux width
 - Drift dominant regime: follows Goldston's model and Eich's scaling
 - Turbulence dominant regime: determined by the turbulence thermal diffusivity
- CFETR could be in a turbulence dominant regime
 - $-\chi_{\perp} > 0.1 \, m^2/s$, turbulence dominant
 - $-\chi_{\perp} < 0.1 \, m^2/s$, Drift dominant

11

Z.Y. Li et al., Nucl. Fusion (2019) X.Q. Xu et al., Nucl. Fusion (2019)

```
\chi_{\perp}~1.0m<sup>2</sup>/s , \lambda_q ~ 4.0mm
```

OD Estimation of Divertor Peak Heat Flux

$$q_{\perp,peak}^{t} \approx \frac{P_{sep}(MW)}{A_{w}(m^{2})} \approx \frac{P_{sep}\sin\beta}{4\pi R_{t}\lambda_{q}^{u}f_{exp}} \qquad f_{exp} = \frac{(B_{p}/B)_{u}}{(B_{p}/B)_{t}}$$

Parameters	Steady-State	Hybrid	ITER (Q=10)
P _{sep} (MW)	219	177	103
β (°)	20	20	25
<i>R</i> _t (m)	7.1	7.1	5.6
λ_q^u (mm)	4	4	5
f _{exp}	3.5	3.5	3.0
$q_{per,peak}^t$ (MW/m2)	60	48	41

λ_q^u BOUT++ simulation

OD Estimation of Divertor Peak Heat Flux

$$q^{t}_{\perp, peak} \approx \frac{P_{sep}(MW)(1 - f_{rad}^{div})}{A_{w}(m^{2})} \approx \frac{P_{sep}(1 - f_{rad}^{div})\sin\beta}{4\pi R_{t}\lambda_{q}^{u}f_{exp}}$$

Parameters	Steady-State	Hybrid	ITER (Q=10)
P _{sep} (MW)	219	177	103
β (°)	20	20	25
<i>R</i> _t (m)	7.1	7.1	5.6
λ_q^u (mm)	4	4	5
fexp	3.5	3.5	3.0
f_{rad}^{div}	0.84	0.8	0.76
$q_{per,peak}^t$ (MW/m2)	9.6	9.6	9.8

- Challenges and Requirements
- Considerations on CFETR Divertor Design
- Edge Modeling Results
- Effects of PFC Shaping and ELM
- Summary and Future Plans

SOLPS Modeling of Edge Plasma for CFETR

- SOLPS-ITER (Full drifts)
- Simulation setup
 - P_{CEI} =200MW (P_e=P_i=100MW)
 - $\Gamma_{He}^{core} = 3.5 \cdot 10^{20} \, s^{-1}$
 - Ar/Ne puffing at outer divertor $\Gamma^{seed}_{Ar/Ne} = (1 10) \cdot 10^{19}$ at/s
 - D₂ puffing from upstream $\Gamma_D^{fuel} = (4 10) \cdot 10^{22}$ at/s
 - W divertor but no sputtering

SOLPS Modeling of Edge Plasma for CFETR

- SOLPS-ITER (Full drifts)
- Simulation setup
 - $P_{CEI} = 200 MW (P_e = P_i = 100 MW)$
 - $\Gamma_{He}^{core} = 3.5 \cdot 10^{20} \, s^{-1}$
 - Ar/Ne puffing at outer divertor $\Gamma^{seed}_{Ar/Ne} = (1 10) \cdot 10^{19}$ at/s
 - D₂ puffing from upstream $\Gamma_D^{fuel} = (4 10) \cdot 10^{22}$ at/s
 - W divertor but no sputtering
 - Anomalous transport coefficients: H mode

- Radiation can be increased by higher impurity seeding rate and fueling rate
 - The highest radiation power ~140 MW

- Radiation can be increased by higher impurity seeding rate and fueling rate
 - The highest radiation power ~140 MW
 - Lower heat flux and T_{e} at the target

- Radiation can be increased by higher impurity seeding rate and fueling rate
 - The highest radiation power ~140 MW
 - Lower heat flux and T_{e} at the target
- Much more Ne is required to have similar radiation power with Ar
 - Higher impurity contamination for Ne
- Compatible with core plasma
 - Z_{eff-ped} < 2

 D_2 puffing rate $1 \times 10^{23} \text{ s}^{-1}$

- Radiation can be increased by higher impurity seeding rate and fueling rate
 - The highest radiation power ~140 MW
 - Lower heat flux and T_e at the target
- Much more Ne is required to have similar radiation power with Ar
 - Higher impurity contamination for Ne
- Compatible with core plasma
 - Z_{eff-ped} < 2
 - Radiation mainly in divertor

 D_2 puffing rate $1 \times 10^{23} \text{ s}^{-1}$

- Radiation can be increased by higher impurity seeding rate and fueling rate
 - The highest radiation power ~140 MW
 - Lower heat flux and T_{e} at the target
- Much more Ne is required to have similar radiation power with Ar
 - Higher impurity contamination for Ne
- Compatible with core plasma
 - Z_{eff-ped} < 2

21

- Radiation mainly in divertor

Partial detachment for both targets

- $P_{peak} < 8 MW/m^2$
- High T_e at the far-SOL region

 D_2 puffing rate $1 \times 10^{23} \text{ s}^{-1}$

 Radiation increased significantly for longer leg length

- Radiation increased significantly for longer leg length
 - Lower heat flux and T_{e} at the target
 - $P_{peak} < 10 MW/m^2$ for all cases

- Radiation increased significantly for longer leg length
 - Lower heat flux and T_{e} at the target
 - $P_{peak} < 10 MW/m^2$ for all cases
- Less Ar is required for long-leg divertor to have similar radiation power
 - Lower impurity contamination

 D_2 puffing rate $8 \times 10^{22} \text{ s}^{-1}$

- Radiation increased significantly for longer leg length
 - Lower heat flux and T_{e} at the target
 - $P_{peak} < 10 MW/m^2$ for all cases
- Less Ar is required for long-leg divertor to have similar radiation power
 - Lower impurity contamination
- Partial detachment for both targets
 - High T_{e} at the far-SOL region

 D_2 puffing rate $8 \times 10^{22} \text{ s}^{-1}$

W Net erosion Rates at Both Divertor Targets Meet the Lifetime Requirements

- Similar W erosion rate for Ne and Ar seeding
- Inner divertor: net deposition

inner target

r-r_{sep} (m)

0.4

 D_2 puffing rate $1 \times 10^{23} \text{ s}^{-1}$

N net erosion rate (10¹⁹m⁻²s⁻¹

1.0

0.8

0.6

0.4

0.2

0

0

-0.2

- Challenges and Requirements
- Considerations on CFETR Divertor Design
- Edge Modeling Results
- Effects of PFC Shaping and ELM
- Summary and Future Plans

W PFCs Need to be Shaped to Avoid Leading Edges

- Misalignment between adjacent PFCs leads to extremely high local heat flux
- Toroidal chamfer to protect edges but minimize shadowed region

- ITER-like fishscale shaping, h=0.55mm

W PFCs Need to be Shaped to Avoid Leading Edges

- ITER-like fishscale shaping, h=0.55mm
 - Increase field line angle and surface heat loading by 49%
 - Reduce maximum surface temperature by 66%

No shaping

h=0.55mm

ANSYS Simulation

Transient Heat Flux has been Calculated using the BOUT++ Simulations

- BOUT++ nonlinear simulation shows a grassy ELMy characteristic for hybrid scenario
 - Relative low pressure perturbation level ~3%
 - ∆W/W ~ 0.13%
- Parallel peak transient heat flux is around 1600MW/m²
- Needs further modeling on various pedestal parameters

Y.R. Zhu Nucl. Fusion (2020), Z.Y. Li et al., **PPCF (2021)**

ELM Effects on Material Lifetime has been Evaluated

 Total heat flux including ELM contribution can not melt W PFCs

Q _{ELMpeak//}	t _{ELM}	f _{ELM}	$Q_{inter\perp} \ ({ m MW/m^2})$	<u>∂W</u>
(MW/m ²)	(ms)	(Hz)		W
1600	1.0	500	2	0.13%

ELM Effects on Material Lifetime has been Evaluated

- Intra-ELM W erosion rate strongly depends on the target sheath conditions
- A detached divertor helps to broaden the operation regime

- Challenges and Requirements
- Considerations on CFETR Divertor Design
- Edge Modeling Results
- Effects of PFC Shaping and ELM
- Summary and Future Plans

Summary and Future Plans

- Conventional divertor configurations with different geometries have been designed and evaluated
- SOLPS simulations helps to obtain a possible solution for CFETR conventional divertor
 - Target heat flux, PFCs lifetime and core compatibility meet the physics requirements
 - Longer divertor leg length has a distinct advantage on radiation losses
- Influence of ELMs on target lifetime has been preliminarily evaluated
- Nest step
 - Optimization of divertor geometry
 - Sensitivity scan of uncertain parameters

Thank you for your attention !