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Major Radius R0 7.2 m

Minor Radius a 2.2 m

Elongation 2

Toroidal B Field  BT 6.5 T

Plasma Current Ip 14 MA

Duty Cycle 0.3-0.5

• Chinese Fusion Engineering Testing 

Reactor (CFETR) Missions

– Obtained  burning Plasma for fusion power

– Steady-state operation for fusion energy

– Breeding tritium for T self-sustained

CFETR aims to bridge the gaps between the fusion experimental 
reactor ITER and the demonstration reactor DEMO

G. Zhuang et al., Nucl. Fusion 59 (2019) 112010
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Plasma Exhaust Solution for CFETR Must Meet 
Requirements Beyond that of ITER

Parameters
Steady-

State (SS)
Hybrid

ITER

(Q=10)

1.0 0.92 0.5

305 251 173

86 74 70

219 177 103

30 25 17

ITERCFETR

• Material limits

– Divertor target heat load    

≤ 10 MW/m2

– Negligible divertor target 

erosion rate

• Plasma limits

– Low impurity contamination

– Efficient He exhaust

• Engineering limits

– Compatible with the first-

wall and blanket 
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• W-based materials for PFCs 

• Magnetic configuration and  

the first wall geometry

– High 𝛿 limited by the design of first 

wall and divertor (optimal 𝛿 ~0.42 )

– Optimal X-point for enough space 

of divertor and blanket 

– dRsep ~ 6 cm is selected to avoid 

the secondary separatrix touches 

the first wall 

Considerations on CFETR Divertor Design
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• W-based materials for PFCs 

• Magnetic configuration and  

the first wall geometry

• Physics requirements

– Ppeak ≤ 10 MW/m2

– Te ≤ 5-10 eV

– ne-sep ≤ 3×1019 m-3

– Zeff-ped ≤ 3

• Divertor configurations
– Conventional (Different leg length)

Considerations on CFETR Divertor Design
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• W-based materials for PFCs 

• Magnetic configuration and  

the first wall geometry

• Physics requirements

– Ppeak ≤ 10 MW/m2

– Te ≤ 5-10 eV

– ne-sep ≤ 3×1019 m-3

– Zeff-ped ≤ 3

• Divertor configurations
– Conventional (Different leg length)

– Snowflake or XD not allowed 

Considerations on CFETR Divertor Design

DC1 current exceeds the limit
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The Baseline Conventional Divertor Design

• Vertical targets for both divertor

– Easier detachment near strike point

• A V-shape corner 

– Higher neutrals compression

• Long divertor leg length

– Higher power radiation losses

• Two pumping slots on the Dome
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0D Estimation of Divertor Peak Heat Flux
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Parameters Steady-State Hybrid ITER (Q=10)

𝑷𝒔𝒆𝒑(MW) 219 177 103

𝛽(°) 20 20 25

𝑹𝒕(m) 7.1 7.1 5.6

𝝀𝒒
𝒖(mm) 2 2 1

𝒇𝒆𝒙𝒑 3.5 3.5 3.0

𝒒𝒑𝒆𝒓,𝒑𝒆𝒂𝒌
𝒕 (MW/m2) 120 97 206

𝝀𝒒
𝒖 Eich’s scaling law PRL 107 (2011) 215001
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BOUT++ Simulation indicates that CFETR could have a 

Broadened Heat Flux Width

• Two different mechanisms 

determine radial transport and   

heat flux width

– Drift dominant regime: follows 

Goldston’s model and Eich’s

scaling

– Turbulence dominant regime: 

determined by the turbulence 
thermal diffusivity

• CFETR could be in a turbulence 

dominant regime 

– 𝜒⊥ > 0.1 𝑚2/𝑠, turbulence dominant

– 𝜒⊥ < 0.1 𝑚2/𝑠, Drift dominant 

𝝌⊥~1.0m2/s ，𝝀𝒒 ~ 4.0mm

Z.Y. Li   et al., Nucl. Fusion (2019)

X.Q. Xu et al., Nucl. Fusion (2019)
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0D Estimation of Divertor Peak Heat Flux

, 2

exp

( ) sin

( ) 4

sep sept

peak u

w t q

P MW P
q

A m R f



 
⊥   exp

( / )

( / )

p u

p t

B B
f

B B
=

Parameters Steady-State Hybrid ITER (Q=10)

𝑷𝒔𝒆𝒑(MW) 219 177 103

𝛽(°) 20 20 25

𝑹𝒕(m) 7.1 7.1 5.6

𝝀𝒒
𝒖(mm) 4 4 5

𝒇𝒆𝒙𝒑 3.5 3.5 3.0

𝒒𝒑𝒆𝒓,𝒑𝒆𝒂𝒌
𝒕 (MW/m2) 60 48 41

𝝀𝒒
𝒖 BOUT++ simulation
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0D Estimation of Divertor Peak Heat Flux

Parameters Steady-State Hybrid ITER (Q=10)

𝑷𝒔𝒆𝒑(MW) 219 177 103

𝛽(°) 20 20 25

𝑹𝒕(m) 7.1 7.1 5.6

𝝀𝒒
𝒖(mm) 4 4 5

𝒇𝒆𝒙𝒑 3.5 3.5 3.0

𝒇𝒓𝒂𝒅
𝒅𝒊𝒗 0.84 0.8 0.76

𝒒𝒑𝒆𝒓,𝒑𝒆𝒂𝒌
𝒕 (MW/m2) 9.6 9.6 9.8
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SOLPS Modeling of Edge Plasma for CFETR

• SOLPS-ITER (Full drifts）

• Simulation setup 

– PCEI=200MW (Pe=Pi=100MW)

– Γ𝐻𝑒
𝑐𝑜𝑟𝑒 = 3.5 ⋅ 1020 𝑠−1

– Ar/Ne puffing at outer divertor

Γ𝐴𝑟/𝑁𝑒
𝑠𝑒𝑒𝑑 = 1 − 10 ⋅ 1019 at/s

– D2 puffing from upstream 

Γ𝐷
𝑓𝑢𝑒𝑙

= 4 − 10 ⋅ 1022 at/s

– W divertor but no sputtering
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SOLPS Modeling of Edge Plasma for CFETR

• SOLPS-ITER (Full drifts）

• Simulation setup 

– PCEI=200MW (Pe=Pi=100MW)

– Γ𝐻𝑒
𝑐𝑜𝑟𝑒 = 3.5 ⋅ 1020 𝑠−1

– Ar/Ne puffing at outer divertor        

Γ𝐴𝑟/𝑁𝑒
𝑠𝑒𝑒𝑑 = 1 − 10 ⋅ 1019 at/s

– D2 puffing from upstream                    

Γ𝐷
𝑓𝑢𝑒𝑙

= 4 − 10 ⋅ 1022 at/s

– W divertor but no sputtering

– Anomalous transport coefficients: H mode
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More Efficient Power Dissipation by Ar seeding than Ne

• Radiation can be increased by higher 

impurity seeding rate and fueling rate

– The highest radiation power ~140 MW
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• Radiation can be increased by higher 

impurity seeding rate and fueling rate

– The highest radiation power ~140 MW

– Lower heat flux and Te at the target

• Much more Ne is required to have 

similar radiation power with Ar

– Higher impurity contamination for Ne

• Compatible with core plasma

– Zeff-ped < 2

D2 puffing rate 1x1023 s-1
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More Efficient Power Dissipation by Ar seeding than Ne

• Radiation can be increased by higher 

impurity seeding rate and fueling rate

– The highest radiation power ~140 MW

– Lower heat flux and Te at the target

• Much more Ne is required to have 

similar radiation power with Ar

– Higher impurity contamination for Ne

• Compatible with core plasma

– Zeff-ped < 2

– Radiation mainly in divertor

• Partial detachment for both targets

– Ppeak < 8 MW/m2

– High Te at the far-SOL region

D2 puffing rate 1x1023 s-1
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• Radiation increased significantly for 

longer leg length

Longer Divertor Leg Length can Meet the Physics 

Requirements More Easily
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• Radiation increased significantly for 

longer leg length

– Lower heat flux and Te at the target

– Ppeak < 10 MW/m2 for all cases

Longer Divertor Leg Length can Meet the Physics 

Requirements More Easily
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Longer Divertor Leg Length can Meet the Physics 

Requirements More Easily

• Radiation increased significantly for 

longer leg length

– Lower heat flux and Te at the target

– Ppeak < 10 MW/m2 for all cases

• Less Ar is required for long-leg 

divertor to have similar radiation 

power 

– Lower impurity contamination 

D2 puffing rate 8x1022 s-1

Ar seeding
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D2 puffing rate 8x1022 s-1

Ar seeding
• Radiation increased significantly for 

longer leg length

– Lower heat flux and Te at the target

– Ppeak < 10 MW/m2 for all cases

• Less Ar is required for long-leg 

divertor to have similar radiation 

power 

– Lower impurity contamination 

• Partial detachment for both targets

– High Te at the far-SOL region

Longer Divertor Leg Length can Meet the Physics 

Requirements More Easily
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Lifetime requirements：
3 years, 0.5 duty cycle

5 years, 0.3 duty cycle

D2 puffing rate 1x1023 s-1

DIVIMP

Simulation

W Net erosion Rates at Both Divertor Targets Meet the 

Lifetime Requirements

• Similar W erosion rate for Ne 

and Ar seeding

• Inner divertor: net deposition
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W PFCs Need to be Shaped to Avoid Leading Edges

Δ
r=

0
.5

Toroidal direction
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q// = 200 MWm-2

Δr=0.5 mm

• Misalignment between adjacent PFCs 

leads to extremely high local heat flux

• Toroidal chamfer to protect edges but 

minimize shadowed region

– ITER-like fishscale shaping, h=0.55mm



29

• ITER-like fishscale shaping, h=0.55mm

– Increase field line angle and surface 
heat loading by 49%

– Reduce maximum surface 
temperature by 66%

11.95 MWm-28.03MWm-2

2
0

0
 M

W
m

-2

Tmax = 4079.78 oC Tmax = 1399.6oC

W PFCs Need to be Shaped to Avoid Leading Edges

h=0.55mmNo shaping

ANSYS Simulation
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Transient Heat Flux has been Calculated using the 

BOUT++ Simulations 

• BOUT++ nonlinear simulation 

shows a grassy ELMy

characteristic for hybrid

scenario

– Relative low pressure 

perturbation level ~3%

– ΔW/W ~ 0.13%

• Parallel peak transient heat flux 

is around 1600MW/m2

• Needs further modeling on 

various pedestal parameters

Y.R. Zhu Nucl. Fusion (2020), Z.Y. Li   et al., PPCF (2021)
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ELM Effects on Material Lifetime has been Evaluated

• Total heat flux including ELM 

contribution can not melt W PFCs
QELMpeak//

(MW/m2)

tELM

(ms)

fELM

(Hz)

Qinter⏊

(MW/m2)
𝜕𝑊

𝑊

1600 1.0 500 2 0.13%

Tpeak = 2371 ℃
Tss = 2348 ℃
dT ≈ 20 ℃ANSYS Simulation
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ELM Effects on Material Lifetime has been Evaluated

• Intra-ELM W erosion rate strongly depends on the target sheath conditions

• A detached divertor helps to broaden the operation regime 

Erosion limit
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Summary and Future Plans

• Conventional divertor configurations with different geometries have been designed 

and evaluated 

• SOLPS simulations helps to obtain a possible solution for CFETR conventional divertor 

– Target heat flux, PFCs lifetime and core compatibility meet the physics 

requirements

– Longer divertor leg length has a distinct advantage on radiation losses

• Influence of ELMs on target lifetime has been preliminarily evaluated 

• Nest step

– Optimization of divertor geometry

– Sensitivity scan of uncertain parameters
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Thank you for your attention !


