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W7-X stellarator experiment – Greifswald (Germany)
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plasma axis:

average major radius: 5.5 m

average minor radius: 0.5 m

OP1.1 (2015/2016) with limiters => 5 MW, 4 MJ

OP1.2a (2017), OP1.2b (2018) with passively cooled graphite 

divertor units => 8 MW, 200 MJ

OP2.1 (start Nov. 2022) with water-cooled CFC divertor units

plasma pulses up to 100 s were successfully 

sustained at 2 MW of heating, and also 

plasmas exceeding 30 s duration at 5 MW of 

heating, of which more than 26 s were with 

divertor detachment 

=> on the path to 30 min 18 GJ operation



Motivation – material choice
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The transition to reactor relevant materials such as 

tungsten PFCs for the proof of principle that the 

stellarator concept can meet the requirements of 

a future fusion reactor.  

component recommended thickness  

divertor ~1-2 mm solid tungsten/tungsten based

materials

baffle > 10-20 µm -> coating with tungsten

wall > 5 µm -> coating with tungsten

Source: Photo B. Kemnitz (IPP Greifswald), 

Areas: C P Dhard et al 2021 Phys. Scr. 96 124059

 divertor area: 25 m2  (C)

 wall area: 

 33 m2  baffle (C)

 47 m2 heat shield (C)

 3 m2  TDA (C)

 6.9 m2  port prot. NBI, diagn. (C)

 62.3 m2 wall panels (SS)

 8.7 m2  PDA (SS)

 6.1 m2  pumping gap panels (SS)

heat load control (limiting heat flux density to 10 MW/m2) 

to protect vessel and ports from overload by energy and 

particles

erosion control (limiting particle fluxes, reducing erosion

yields) 

control of particle recycling and exhaust

 active pumping

 minimum neutral gas density in main chamber (low cx flux)

 wall conditioning

 efficient impurity screening

avoidance of magnetic field perturbation by PFC materials

low activation of materials



Motivation – loads higher than expected in different locations
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heat load problems

 divertor heat load patterns were generally as expected

 large wetted areas – due to long connection lengths

 stable detachment was achieved (up to ~30 s) with sufficient particle 

exhaust

 boronization for strong impurity reduction in SOL, enabling density control 

above 1020 m-3

first lessons learned: definition of Plasma Facing Surface (PFS) meets the general requirements, but …



Motivation – heat load problems during plasma operation
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KJM (high-

mirror): up 

to 800°C,

2.5 MW/m2 

> 0.25 

MW/m2 

thermal overload 

expected with higher β

OP1.2a: melting of 

steel plates 

EJM 

(standard): 

up to 0.7 

MW/m2 

> 0.25 

MW/m2 TM5h, 6h

up to

5 MW/m2

(> 1 MW/m2 )

TM6h->7h 

> 2000°C

EJM 

(standard)

: up to 0.7 

MW/m2

> 0.25 

MW/m2 

FTM (high-

iota) strike 

line extension 

with higher β

thermal overload 

expected with higher β

excess heat loads are observed at several positions for different 

magnetic field configurations => operation limitations

first phase with C is to establish the physics to be 

able to design metallic machine PFCs based on 

experiments/physics modelling



Motivation – exhaust limitation
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standard configuration:

heat load distribution

high-iota configuration:

heat load distribution

AEH port

AEP port

more particle/heat load

-> more recycling

-> higher neutral gas pressure?

 neutral gas exhaust was sufficient for plasma density control even during long discharges (up to 100 s) – but before that 

wall conditioning discharges were required

 but relatively low neutral gas pressures in the sub-divertor region

 control of temperature-induced outgassing of the wall components by active pumping (TMPs, cryopumps in OP2)

standard configuration (EJM) up to Pdiv = 4*10-4 mbar (AEH port)  

high-iota configuration (FTM) up to Pdiv= 1*10-3 mbar (AEP port) 

issue of poloidal and toroidal leakages

(limited plugging by the divertor plasma) –

continuous helical divertor?

high iota divertor section

low iota divertor section
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Motivation – exhaust limitation
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standard configuration (EJM) up to Pdiv = 4*10-4 mbar (AEH port)  

high-iota configuration (FTM) up to Pdiv= 1*10-3 mbar (AEP port) 
surprisingly high pressure in the

high-iota section without strike

line there in the standard config.

 neutral gas exhaust was sufficient for plasma density control even during long discharges (up to 100 s) – but before that 

wall conditioning discharges were required

 but relatively low neutral gas pressures in the sub-divertor region

 control of temperature-induced outgassing of the wall components by active pumping (TMPs, cryopumps in OP2)
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Optimization criteria, goals and constraints
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heat 

removal

fuel 

removal

He 

removal 

impurity 

control

Physics based optimization of plasma facing surface (standard, high-iota, high-mirror)

 avoiding power overload (targets, baffles, heat shield, wall, diagnostics)

 avoiding excess local erosion (e.g. at leading edges)

 improved exhaust aiming at higher neutral gas pressures in the sub-divertor space, 

reduce leakages, improve (toroidal & poloidal) plugging

 provide effective screening of impurities (keep them away from the core region (low 

Zeff)) – impact of geometry modifications?

Development, manufacturing, high-heat load testing and installation technology qualification:

 target elements (WPDIV-W7X) for 10 MW/m2 in steady-state (merging 3 target 

elements into one heat sink including parallel cooling channels and manifold), W/W-

alloy bonding with Cu/CuCrZr heat sink

 reducing thermal bending of target elements

 target modules

 baffle modules

thermal-mechanical assessments, cyclic high heat flux resistance

detailed planning of series production and installation

parallel activity of the physics concept and technology development with continuous 

exchange of information - definition of plasma facing surface will be an essential input 

for the integrated design of sub-divertor components.
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Optimization: technical constraints
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CFC HHF divertor geometry forms the basis for a new W divertor design: 10 MW/m² design heat load, 

need for special tile design at the pumping gap, with increased design heat load from 2-5 to 10 MW/m²

limiting target module weight ~70 kg: 

cryopump operation should by ensured also with a new divertor

Using existing cooling water infrastructure: 

 5 l/s per target module, 12 modules per unit

 single phase flow at 10 MW/m²

more details 

simplify manufacturing

minimize pipe work, weld seams and target 

element positioning issues

minimize number of target elements per module

preferably one target element per module without 

support structure

stiff at cold side to minimize thermal curvature

simplify installation

target modules statically determined supported

to avoid retrained thermal expansion

to facilitate precise positioning

relax installation tolerances (gaps and steps)

water connection accessible after installation



Steps of concept development: optimization via modelling

M A X - P L A N C K - I N S T I TU T F Ü R  P L A S M A P H Y S I K  |  D .  N A U J O K S |  0 7 . 11 . 2 0 2 2       4 T H  I A E A T E C H N I C A L M E E T I N G  O N  D I V E RT O R C O N C E P T S 1 2

4. Preliminary design check using fast tools

1. Construct set of representative 

magnetic equilibria

*include high beta effects

=> Tool: VMEC + Extender

2. Benchmark modelling tools

(EMC3-Lite, EMC3/Eirene, etc.)

against experimental observations

3. Plasma facing surface (PFS) 

corresponding to proposed design 

change

=> Tool: CATIA + Kisslinger

Format 

5. Detailed design check

- validate results

- better neutral gas model

=> Tool: HINT, EMC3/Eirene, 

DIVGAS

PFS definition
Neutral exhaust

- Probability to reach PG

- Neutral pressure

=> Tool: ANSYS, MC

Heat flux

- Strike line position

- Wetted area

=> Tool: EMC3-Lite

design is mainly driven by physics modeling of various complexity, which are validated against results 

obtained experimentally 

 this phase ends with an international design review and a detailed assessment of manufacturing 

costs, timeline and resources



Steps of concept development – physics studies: basics
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flux tubes with long connection lengths are supplied 

with energy via cross-field transport from the core

connection length 

at phi=0

strike line positions

construction of a flux surface with 

high parallel power fluxes = long connection length



Steps of concept development – physics studies: basics
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pattern of connection lengths [m] pattern of angle of incidence

3D heat load distribution is defined by parallel/perpendicular transport of energy and by the 

angle of incidence: Ps [MW/m2] = Pparallel
x sin x exp(-/q)



Steps of concept development – physics studies: basics
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pattern of connection lengths [m] pattern of angle of incidence
heat load distribution Ps

 distance from high energy flux tube to the components 

q power decay length in the SOL

3D heat load distribution is defined by parallel/perpendicular transport of energy and by the 

angle of incidence: Ps [MW/m2] = Pparallel
x sin x exp(-/q)

q= 1 cm



Steps of concept development – physics studies: basics
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heat load distribution Ps

 distance from high energy flux tube to the components 

q power decay length in the SOL

q= 1 cmq= 2 cmq= 3 cm

3D heat load distribution is defined by parallel/perpendicular transport of energy and by the 

angle of incidence: Ps [MW/m2] = Pparallel
x sin x exp(-/q)



Steps of concept development – physics studies: basics
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3D heat load distribution is defined by parallel/perpendicular transport of energy and by the 

angle of incidence: Ps [MW/m2] = Pparallel
x sin x exp(-/q)

heat load distribution Ps

 distance from high energy flux tube to the components 

q power decay length in the SOL

q= 1 cm

comparison with experimental results



Steps of concept development – physics studies: basics
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heat load distribution Ps

 distance from high energy flux tube to the components 

q power decay length in the SOL

q= 1 cm

comparison with experimental results

comparison 

with EMC3-Lite

3D heat load distribution is defined by parallel/perpendicular transport of energy and by the 

angle of incidence: Ps [MW/m2] = Pparallel
x sin x exp(-/q)
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Tools for physics simulation – heat load calculations with EMC3-Lite
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Source:  Yuhe Feng 2022 Plasma Phys. Control. Fusion in press https://doi.org/10.1088/1361-6587/ac9ed9

Fast numerical tool -> order of magnitude estimate of heat fluxes onto arbitrary 3D PFCs ~ 100s

Heat transport equation neglecting convective energy fluxes and the parallel conduction of ions, 

ignoring energy source terms due to neutrals and impurities, assuming constant density:

Bohm condition at the targets:

║transport -> electron heat conduction, ┴ transport ->

Constant parallel heat conductivity ->

Constant density

EMC3-Lite includes only parallel classical electron conduction and a perpendicular anomalous 

conductive process, which are the dominant heat transport processes at low plasma densities.



Tools for physics simulation - neutral gas dynamics with ANSYS 
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plasma domain

sub-divertor 

domain

Definition of sub-divertor geometry

using neutral gas modelling 

aims: efficient exhaust to the pumps (TMP, cryopumps)

3D transport of neutral molecules in the W7-X 

sub-divertor region calculated by using the 

ANSYS radiation transport code

free molecular regime (Kn ≥ 10)



Tools for physics simulation – neutral gas dynamics with DIVGAS 
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plasma domain

sub-divertor 

domain

verification of the initial results by using neutral gas 

modelling with DIVGAS (KIT) for higher neutral gas 

pressure (incl. particle-particle collisions)

DIVGAS is based on the Direct 

Simulation Monte Carlo (DSMC) 

method including neutral-neutral 

collisions in the volume

collaboration with KIT

S. Varoutis, C. Tantos, H. Strobel,

Yu. Igitkhanov, Chr. Day



Design tools with CATIA
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the modeling activities are supported by the development of efficient 

engineering tools in a CATIA environment that process the complex 3D W7-X 

design data at different levels of sophistication to promote an efficient 

interchange with the physics-based codes



Design tools with CATIA
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detailed CAD geometry of 

one divertor unit
reduced grid model with 

limited number of grid points

the modeling activities are supported by the development of efficient 

engineering tools in a CATIA environment that process the complex 3D W7-X 

design data at different levels of sophistication to promote an efficient 

interchange with the physics-based codes

the grid model



Design tools with CATIA
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detailed CAD geometry of 

one divertor unit
grid model together with 

Poincare-plot 

EMC3-Lite results mapped 

onto the grid model

the grid model is used to modify the plasma facing surface as input for the physics modeling



Geometry modifications 
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Definition of the plasma facing surface (PFS)

using diffusive field line tracing (DLFT), EMC3-Lite, 

EMC3/Eirene

aims: heat load optimization + high neutral gas 

density at the pumping gap
plasma domain

sub-divertor 

domain



Steps of concept development – physics studies
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Peak heat load Vertical target (MW/m^2): 4.44

Peak heat load Horizontal target (MW/m^2): 6.6

Peak heat load Vertical baffle (MW/m^2): 1.3

Peak heat load Horizontal baffle (MW/m^2): 0.0162

P_Incident (W): 1.00e+07

P_depo Vertical target (W): 2.24e+05

P_depo Horizontal target (W): 7.45e+05

P_depo Vertical baffle (W):  2.96e+04

P_depo Horizontal baffle (W):  1.09e+02

P_lost (W):  1.21e+03

detailed assessment of heat-load redistribution due to geometry modifications for three main 

configurations (standard, high-iota, high-mirror) and different beta values     => in progress

beta = 0

beta = 3% 

vol. avgd.
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Experimental verification of the concept ideas
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erosion and deposition pattern see at these positions

Source: Yu Gao et al 2020 Nucl. Fusion 60 096012

overload of baffles (BM1v) observed in former campaigns (OP1.2)

see on p. 6
the IR image is overlaid with the image of the CAD 

components associated with the camera view.



Experimental verification of the concept ideas –> thinner tiles
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BM1v: thin W/WCuNi tiles together with modified 

graphite tiles (photo taken in module 1, lower divertor 

with 4 WCuNi tiles in the center of this baffle module)

reduction of heat loads 

for higher energy input 

Source: Yu Gao et al 2020 Nucl. Fusion 60 096012



Experimental verification of the concept ideas
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BM1v: thin W/WCuNi tiles together with modified 

graphite tiles (photo taken in module 1, lower divertor 

with 4 WCuNi tiles in the center of this baffle module)

OP2.1 commissioning phase: first indications that the design change works

XP:20221026.14

AEK view onto TM1v and BM1v



Summary
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 new W divertor for W7-X is planned: with reactor relevant PFCs and favorable 
geometry modifications appropriate for improved heat load capabilities and 
efficient exhaust

 consideration of both technical and physical constraints during concept 
development

 intensive modeling and verification against the experimental results as multi-
stage iteration process – prediction for high-beta operation

 parallel development of single target elements with tungsten based materials as 
plasma facing surface – prototype development and testing in high-heat flux 
facilities -> part of EUROfusion WPDIV

 definition of a new plasma facing surface as basis for the integrated design of 
target modules and sub-divertor components, supported by newly developed, 
unique design tools in the CATIA environment


