Modeling a Lithium Vapor **Box Divertor and Resulting Ion Flows on NSTX-U using SOLPS**

Author: Eric Emdee

IAEA 4th Technical Meeting on Divertors

Vienna, Austria November 8th, 2022

Advisor: Rob Goldston

Introduction: Divertor Detachment Can Be Problematic

- Divertor detachment is necessary for future fusion devices to ensure PFC lifetime
- Divertor detachment with medium-Z impurities has the tendency to create a highly radiating region at the X-point
 - Can reduce core & pedestal performance
 - Heat flux reduction can be maintained at the cost of high Z_{eff}
- Goal: create a detached divertor that confines radiation and impurities close to the target

Introduction: The Lithium Vapor Box

- The lithium vapor box seeks to detach via lithium vapor evaporation near the target, and condensation further upstream
- Original vapor box design imagines different chambers for condensation and evaporation
- A large focus of this work is determining the importance of the specific geometry to:
 - Keep radiation below X-pt
 - Keep impurities in box

Diagram Credit: Jacob Schwartz

Modelling High Power Conditions

 Low power lithium vapor box can have nearly non-existent upstream lithium fraction (Emdee et al. 2021)

 Moved to predictive modeling of high power NSTX-U H-mode shots using SOLPS

-
$$P_{in} = 10 \text{ MW}$$

- $q_{target}^{max} \sim 65 \text{ MW/m}^2$

4

Set Up: Box to Slot Comparison

- Set up two divertor designs, one closer to the original vapor box design with a box and one a slot divertor geometry

Upstream Temperature Can Be Sustained With a Box Geometry ¹⁵⁰ Box no puff Slot no puff

- The upstream temperature is unaffected by lithium evaporation if the divertor has a box geometry
- Slot sees upstream
 temperature degradation as
 lithium evaporation is
 increased
 - Corresponds to n_{Li}/n_e>0.1 upstream

Lithium Fraction Controlled Better in Box

- Upstream lithium content in the slot geometry is less controlled
- The baffles are important for lithium containment

Divertor Heat Flux Dramatically Reduced

 Slot has difficulty getting below 5 MW/m² without reductions in upstream temperature

 Box can contain the lithium and reduce heat to the target further

Flow Reversal in Far SOL in Slot Geo.

 -10^{22}

1.0

- The far SOL lithium flow eventually becomes upstream-directed with enough lithium evaporation in the slot Downstream-directed Li Flow

Upstream-directed Li Flow 7e23 Li/s 1e23 D2/s slot 3e23 Li/s 1e23 D2/s slot 1022 1022 -1.0-1.1Flux (s⁻¹ -1.2 Flux 1021 1021 Particle Particle Έ^{-1.3} Ν $\frac{10^{20}}{-10^{20}}$ $\frac{10^{20}}{-10^{20}}$ -10²¹ Doloidal Poloidal -1.4-1021

 -10^{22}

g

1.0

-1.5

-1.6

0.4

0.5

0.6

0.7

R [m]

0.8

0.9

-1.0

-1.1

-1.2

-1.4

-1.5

-1.6

0.4

0.5

0.6

0.7

R [m]

0.8

0.9

Ξ ^{-1.3}

Flow Never Reverses in Box Geo.

 In the box geometry the far SOL lithium flow is never reversed for any of the cases tested

Thermal Gradient Location Leads to Important Differences

- Higher temperature within box leads to more radiation from the lithium due to higher ϵ_{cool}
- Box has more efficient lithium cooling, thus requiring a lower source so cooling requirements can be achieved without reversing flow in far SOL

Line Radiation Peaks Below X-Point

- Line radiation peaks at box entrance, succeeding in keeping radiation below X-point $_{120}4 \times 10^{23}$ Li/s 1×10^{23} D₂/s

