Minimum divertor leg length for a detached divertor and high performance core plasma

by A.W. Leonard, J.M. Canik, A.E. Jaervinen, A.G. McLean, M.W. Shafer and F.Scotti

Presented at IAEA 4th Technical Meeting on Divertor Concepts

Nov. 7-10, 2022

Determine minimum divertor volume for core-compatible heat flux dissipation

• A divertor solution should simultaneously:

- Provide full heat flux dissipation
- Maintain hot X-point/pedestal plasma for high core performance

Divertor volume is expensive

- Larger toroidal field coils for long divertor legs
- Complicated poloidal field coils for advanced, higher volume configurations; X-divertor, Snowflake, Super-X
- Goal: Determine processes and scaling of radiative dissipation scale lengths from X-point to divertor target

Convection dominates poloidal energy transport in divertor dissipative region

- Conductive transport models predict small radiating volume and low levels of dissipation due to low-Z impurities
 - Conduction dominated models at high power density exhibit small volumes with appropriate conditions for low-Z impurity radiation, $30e \ge T_e \ge 5eV$;

$$\frac{dT_e}{ds} = \kappa_0^{-1} q_{\parallel} T_e^{-5/2} \kappa_0$$

- Lengyel-type scaling models exhibit weak dependence on divertor leg length; $n_{sep,detach} \propto L^{2/7}$, with small fraction of divertor volume providing dissipation
- Experimental evidence, and modeling, find convection dominates and expands volume of dissipative region
 - Motivates re-examination of dissipative divertor scaling
 Transport dominated by parallel flow and ExB poloidal drifts

2D Profile of Divertor n_e and T_e Reconstructed from Divertor Thomson Scattering

- Divertor swept across DTS during constant conditions
- Data selection for $n_e(L_{||})$, $T_e(L_{||})$
 - Within λ_q of separatrix, ψ =1.004
 - Only data points between ELMs

Parallel temperature gradient, ∇T_e , inadequate to support conductive heat flux

- For conductive transport, T_e gradient very steep for $T_e{\leq}~30~eV$
- Poloidal heat flux carried by parallel and ExB plasma flow

– H-mode attached, $q_{\parallel} \sim 700 \ MW/m^2$

Thomson Scattering near SOL T_e profile (ψ_n =1.0005-1.004)

Convective transport also indicated in detached divertor plasmas

- Large region of low T_e in detached plasmas
- Poloidal heat flux carried by parallel and ExB plasma flow

– H-mode detached, $q_{\parallel} \sim 500 \ MW/m^2$

Thomson Scattering near SOL T_e profile (ψ_n =1.0005-1.004)

DIII-D observes a maximum poloidal ∇T_e

- Shots with a detached OSP, and a stable high T_e gradient and radiation front mid-way up the outer leg show maximum gradient of ~200 eV/m
 - Open lower divertor cases only, inter ELM
- This still presents a control challenge as many shots pushed into deep detachment to the point of X-point radiation
 - Goal to 'hold' radiation front near the target surface, but still with T_{e,OSP}<2 eV

For 80-100 eV X-point consistent with a highperformance core, implies a 40-50cm poloidal leg

Shot	P _{inj} (MW)	∇T _{e, avg} (eV/m)
174310	13 MW	188.3
183557	Ohmic	154.5
185819	3.3 MW	38.3
185822	3.3 MW	110.8
185825	3.3 MW	146.3
185836	3.3 MW	131.6
186802	9 MW	205.1

UEDGE Modeling For Examining Role of Plasma Drifts in Divertor Transport

- UEDGE: 2D fluid modeling with realistic geometry
 - Includes convective transport driven by ionization, and drifts

UEDGE constraints for 3 MW case

- Radial transport set to match upstream profiles
- Carbon source from standard physical and chemical sputtering yields
- Increase upstream density for detached target conditions, $T_{e,Div} \leq 5 eV$

UEDGE Highlights Importance of Drifts in Detached Divertor Plasmas

- Inclusion of drifts adds to poloidal transport, flattening parallel $T_{\rm e}$ and $n_{\rm e}$ gradients
- Upstream input power and transport coefficients adjusted to match experiment upstream profiles and divertor entrance q₁₁
 - Same power and transport coefficients for cases w/ drifts and no drifts
- Upstream density increases until target $T_e < 3eV$

Poloidal ExB Drift Dominates Divertor Heat Flux Transport

- UEDGE achieves near complete dissipation of heat flux
- Parallel convection carries only 1/3 of heat flux, consistent with experimental measurements

Impurity density and radiation are directly measured with VUV spectroscopy

- Local impurity density and radiation measured with VUV spectroscopy
- Local T_e and n_e measured with Thomson scattering
- For typical detached H-mode plasma at 10 MW
 - $\varepsilon = 10 MW/m^3$ in carbon radiation

Convective transport reduces ∇T_e and expands radiating volume

For a convecting plasma

$$\frac{dT_e}{ds} = \frac{P_{rad}}{\mathcal{E}_{th} v_{\parallel}}$$

- With measured P_{rad} = 10 MW/m^{3,} n_e= 10²⁰m³, T_e = 10 and sonic flow

implies;
$$\frac{dT_e}{ds} \sim 2 \ eV/m_{\parallel}$$
 or $\frac{dT_e}{ds} \sim 100 \ eV/m_{pol}$

- Poloidal drift may increase ∇T_e consistent with measured 200 eV/m_{pol}
- For DIII-D Phase II divertor a 50 cm divertor leg would allow for 100 eV at X-point plasma and 1 eV at the target

^[1] Kallenbach PPCF 2013

DIII-D will take a staged approach to address the exhaust challenge

Stage 1: Shape & Volume Rise

Stage 2 Concept: Longer Leg

- Stage I
 - Higher field and power to access more reactor relevant plasma parameters

Stage II

 A divertor geometry to determine minimum divertor leg length and optimal baffle structure

Stage III

 Divertor geometry to test optimization of highest performance integrated coreedge solution

Stage 2 will explore divertor leg length as well as baffle optimization

• Divertor performance examined

- Full detachment and dissipation
- Hot X-point plasma
- Detachment front stability
- Dependence on operational scenario, B_t, I_p, Power, etc
- Divertor performance may improved by baffle options due to
 - Recycling ionization and recombination profiles
 - Neutral transport
 - Plasma drifts

Stage 2 Concept: Longer Leg

Implications of convection dominated transport

- Conduction dominated Lengyel-type models do not accurately describe divertor dissipation
 - While radiative dissipation scales as, $\mathcal{E} \propto f_z n_e^2$ in a device,
 - Such models not appropriate for prediction of total radiation in different configurations, detachment front stability, etc.
- Projecting \(\nabla T_e\) (radiating volume) requires detailed modeling of particle balance
 - Ionization, recombination, baffling control of neutral transport, pumping, etc.
 - $E \times B$ drifts

Other effects may also expand radiating volume

- Radial diffusion
- Turbulence

