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Determine minimum divertor volume for core-compatible

heat flux dissipation

A diverior solution should simultaneously:
— Provide full heat flux dissipation

— Maintain hot X-point/pedestal plasma for high core
performance

 Divertor volume is expensive
— Larger toroidal field coils for long divertor legs

— Complicated poloidal field coils for advanced, higher volume
configurations; X-divertor, Snowflake, Super-X

- Goal: Determine processes and scaling of radiative
dissipation scale lengths from X-point to divertor target
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Convection dominates poloidal energy transport in

divertor dissipative region

onductive transport models predict small radiating volume
and low levels of dissipation due to low-Z impurities

— Conduction dominated models at high power density exhibit
small volumes with appropriate conditions for low-Z impurity
radiation, 30e > T, = 5eV;

dT,
ds

Te_5/2

-1
= Ko () Ko

— Lengyel-type scaling models exhibit weak dependence on
divertor leg length; nsep getacn * L?/7, with small fraction of divertor
volume providing dissipation

- Experimental evidence, and modeling, find convection
dominates and expands volume of dissipative region

— Motivates re-examination of dissipative divertor scaling
— Transport dominated by parallel flow and ExB poloidal drifts
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2D Profile of Divertor n. and T, Reconstructed from

Divertor Thomson Scattering

 Divertor swept across DTS
during constant conditions

N N -
~ \. //////
Divertor--- ~
/
/
/

- Data selection for n(L, ), Te(L,|) pomson
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Parallel temperature gradient, VT ., inadequate to support

conductive heat flux

forT.< 30 eV

For conductive transport, T. gradient very steep

— H-mode aftached, ¢;~700 MW /m?
Thomson Scattering near SOL T, profile (y,=1.0005-1.004)
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Poloidal heat flux carried by parallel and ExB plasma flow
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Convective fransport also indicated in detached
divertor plasmas

 Large region of low T, in detached plasmas

- Poloidal heat flux carried by parallel and ExB plasma flow
— H-mode detached, g;~500 MW /m?

Thomson Scattering near SOL T, profile (y,=1.0005-1.004)
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DIlI-D observes a maximum poloidal VT,

- Shots with a detached OSP, and mm VT, avg
a stable high T, gradient and (eV/m)

radiation front mid-way up the 174310 13 MW 188.3

outer leg show maximum 183557  Ohmic 154.5
gradient of ~200 eV/m 185819 3.3 MW 18.3

— g_%en lower divertor cases only, inter 185899 3.3 MW 110.8

185825 3.3 MW 146.3

185836 3.3 MW 131.6

* This still presents a control
challenge as many shots pushed
into deep detachment to the
point of X-point radiation

— Goal to ‘hold’ radiation front near the
target surface, but still with Ty o5p<2 €V

186802 9 MW 205.1
— N

-1.0

Z(m) =

For 80-100 eV X-point consistent with a high-
performance core, implies a 40-50cm poloidal leg
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UEDGE Modeling For Examining Role of Plasma Drifts

in Divertor Transport

- UEDGE: 2D fluid modeling with realistic geomeiry
— Includes convective transport driven by ionization, and drifts

 UEDGE constraints for 3 MW case
— Radial fransport set to match upstream profiles
— Carbon source from standard physical and chemical sputtering yields
— Increase upstream density for detached target conditions, T¢ < 5 eV
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UEDGE Highlights Importance of Drifts in Detached

Divertor Plasmas

* Inclusion of drifts adds to poloidal transport, flattening parallel T, and
n. gradients

+ Upsiream input power and transport coefficients adjusted to maich
experiment upstream profiles and divertor entrance q,

— Same power and transport coefficients for cases w/ drifts and no drifts

« Upsiream density increases until target T, < 3eV
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Poloidal ExB Drift Dominates Divertor Heat Flux Transport

- UEDGE achieves near complete dissipation of heat flux

 Parallel convection carries only 1/3 of heat flux, consistent with
experimental measurements

- ExB poloidal drift effective
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Impurity density and radiation are directly measured with

VUV spectroscopy

* Local impurity density and radiation measured with VUV
speciroscopy

* Local T, and n_, measured with Thomson scattering

 For typical detached H-mode plasma at 10 MW
— €=10 MW /m?3 in carbon radiation
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Convective transport reduces VT,

and expands radiating volume

* For a convecting plasma
dTe . Prad
ds B Sthv"

— With measured P,oq= 10 MW/m?

Ne= 10m3, T, = 10 and sonic flow

P ./In n H\Alm31

. . dT, drT,
Im |Ies; _e~2 eV m Or_e~100 eV m 111 | 1 1 11111 | 1 1 111 |
p ds / I ds / pol 10 1(%0 : V]1000 10000

— Poloidal drift may increase VT,

consistent with measured 200 eV /m,,,, [1] Kallenbach PPCF 2013

 For DIII-D Phase Il divertor a 50 cm
divertor leg would allow for 100 eV at
X-point plasma and 1 eV at the target
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DIlI-D will take a staged approach to address the

exhaust challenge
Stage 1: Shape & Volume Rise

/ \ - Stage |

— Higher field and power 1o access
more reactor relevant plasma
\\ parameters

- Stage ll

— A divertor geometry to determine
minimum divertor leg length and

Stage 2 Concept: Longer Leg

/ \ optimal baffle structure
___ baffling - Stage il
|, options — Divertor geometry to test

optimization of highest
performance infegrated core-
edge solution
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Stage 2 will explore divertor leg length
as well as baffle optimization

Stage 2 Concept: Longer Leg

 Divertor performance examined
— Full detachment and dissipation / \
— Hot X-point plasma baffling
— Detachment front stability options

— Dependence on operationadl
scenario, By, I,, Power, etc ||| —L \\ T

 Divertor performance may
improved by baffle options due to

— Recycling ionization and
recombination profiles

— Neutral fransport
— Plasma drifts
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Implications of convection dominated transport

« Conduction dominated Lengyel-type models do not
accurately describe divertor dissipation
— While radiative dissipation scales as, € « f,nZ in a device,

— Such models not appropriate for prediction of total radiation in
different configurations, detachment front stability, efc.

 Projecting VT, (radiating volume) requires detailed
modeling of particle balance

— lonization, recombination, baffling control of neutral transport,
pumping, etc.

— EXB drifts

- Other effects may also expand radiating volume
— Radial diffusion
— Turbulence
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