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Time-dependent SOLPS-ITER simulations were performed 
to address dynamic problems
✓ Most SOLPS-ITER simulations focus on steady-state B2.5 plasma solutions
• B2.5 plasma state converges with global particle balance achieved
• Quasi steady-state (QSS) EIRENE schemes are used
→ This approach cannot deal with dynamic problems (both plasma and neutral 

dynamics)

❑ Examples of dynamic problems in the boundary of tokamaks
1) Abrupt target flux drop (cliff type [1-2]) induced by strong X-point radiation with time 

scale of few tens of ms, observed in KSTAR experiment
2) System identification with time-varying gas injection signal
3) Design of actuators for real-time control

e.g., Louvre (neutral conductance regulator) → requires time-dep. neutral solver

❑ Two types of time-dependent SOLPS-ITER simulations to address above problems
1) Full time-dependent simulation (both B2.5 & EIRENE)
2) QSS time-dependent simulation (only B2.5, QSS EIRENE scheme)

→ Both requires time-dependent settings in B2.5 side
(w/o numerical acceleration or relaxation, etc.)

[1] Eldon, D., et al. 2017 Nucl. Fusion 57 066039

[2] McLean, A. G., et al. 2015 J. Nucl. Mater. 463 533-536
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Summary

❑ Time-dependent SOLPS-ITER simulations were performed to address dynamic problems:

1) Bifurcation-like KSTAR target flux drop
• Unstable branch solutions can be obtained which qualitatively reproduced measured target 

flux, radiation and density trends
• Simultaneous penetration of carbon radiation and ionization front towards the core region 

across X-point by excessive cooling of the fluxtube with D2 gas injection
• Both the ionization front and radiation front are strongly coupled to the 𝑇e (5eV front)
• 𝑇et characterizes 𝑇e(𝑠∥) for both inner/outer divertor SOL

2) System identification with time-varying gas puff
• Phase space (𝑛e,sep vs. 𝑇et) represent system characteristic: by time-dep. throughput scan

a) Clearly demonstrates hysteresis and directional properties on the phase space
b) 𝑇et determines threshold of KSTAR bifurcation-like transition

• Low density branch of SPARC shows hysteresis due to thermo-electric current

3) Design of Louvre actuator that controls divertor neutral pressure
• Time-dependent SOLPS-ITER can be used to actuator design (response time)
• Simulated neutral relaxation time scale agrees with analytic model
• The effects of Louvre transparency and gas throughput can be equivalent in plasma away from 

the pump.
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Bifurcation-like target flux drop coupled with X-point radiation 
observed  in KSTAR density ramp experiment

❑ Discharge condition
• 𝐼p = 0.6 MA, 𝐵T = 2.5 T (forward field),

𝑃heat = 0.93 MW (mainly NB), L-mode density ramp: ത𝑛e = 2.0 − 3.0 × 1019 m−3

❑ Abrupt target flux drop characteristic
▪ Target flux drop when line averaged density reaches critical level
▪ Time scale of 20-30 ms
▪ Simultaneous drop for both targets, whole profile (PFR-SOL)
→ Different type of cliff from ExB Drift induced cliff in DIII-D [1]

▪ Considering time-scale of the drop, it may not be ‘carbon oscillation’ [2]
[1] Jaervinen, A. E., et al. 2018 Phys. Rev. Lett. 121 075001

[2] Loarte, A., et al. 1998 Nucl. Fusion 38 331
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SOLPS-ITER SS (before drop) + time-dep. (during drop) solutions 
reproduced experimental target trend

• Steady state behavior: OT rollover at lower 𝑛e,sep than IT (reproduced [JSPark 2018 NF 58])
• Time-dependent simulation shows that collapse of the target flux profile is continuous in time within 100 ms

(collapse time scale depends on the gas throughput)

ne,sep = ##
→ time-indep. solutions
Time = ##
→ time-dep. solutions

x : most attached case
△: peaked target flux

IT rollover
𝑛e,sep = 2.06𝑒19 m−3

IT flux
abrupt drop

OT flux
abrupt drop

OT rollover
𝑛e,sep = 1.40𝑒19 m−3

i)

ii)

i) OT rollover, ii) IT rollover

❑ Simulation setup

• PSOL = 0.8 MW

• Species: D, C

• Core boundary particle flux (D+) = 8e19/s 

(neutral beam)

• Steady-state (SS) fueling throughput scans: 

5e20-3e21 atom/s

• Time-dependent simulation for 4 

throughputs: 3e21, 4e21, 5e21, 8e21 /s

• QSS time-dependent simulations were 

performed because plasma dynamics is 

more important for this problem
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Simulated core density trend matches with measured ത𝑛e

• 𝑛e,core (𝑛e at OMP core bdy.) and 𝑁e,core (total # of core ptl.) increases
→ In SOLPS-ITER, ‘core region’ only covers core periphery so lack of core coverage gives 

ത𝑛e trend discrepancy with experimental observation
(dominant contribution of core density to ത𝑛e considering monotonic profile and width)

→ However, SOLPS-ITER core density trend agrees with experimental observation
• Both the separatrix and core carbon concentration increases, and core radiation 

become dominant as abrupt target flux drop proceeds

❑ Steady-state (SS) solution + time-dependent solution: GP = 3e21, 5-100 ms (20 snapshots)

OMP core boundary

Core radiation 
dominates

Averaged over OMP
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EI front and Prad front coincides with 4-5 eV fronts

1-5th SOL ring
IT-IMP, OT-OMP

• 𝑇et ~ 𝑠∥(5 eV) relation can be changed by geometry or IT/OT
• However, EI front and Prad front (mainly carbon) always coincides with 5eV front
• Regardless of the flux tubes, front location is tightly coupled with 𝑇et

• 𝑠∥ EI front ≡
𝑡
𝑢
𝑆𝑛𝑎𝑠∥𝑑𝑠∥

𝑡
𝑢
𝑆𝑛𝑎𝑑𝑠∥

• 𝑠∥ Prad front ≡
𝑡
𝑢
𝑃rad𝑠∥𝑑𝑠∥

𝑡
𝑢
𝑃rad𝑑𝑠∥

IT-IMP

OT-OMP

5eV front EI front Prad front

❑ 20 snapshots of time-dep solution and SS solution
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Radial distribution of 𝑛e, 𝑇e, 𝑃rad, 𝑆𝑛𝑎 just above X-pt (core – SOL)

• Radiation and ionization source both peaks at the X-pt then penetrates core
• Density and ionization source peaks near the X-pt & core temperature cooled with radiation
• Strong localized radiative cooling makes 𝑇e profile partially non-monotonic at the X-point

Core-SOL
Just above

OXpt

Sep

Core SOL

Sep

Sep

Sep

5eV

Core SOL

𝑟 − 𝑟sep OMP

Radial coordinate w.r.t.
separatrix mapped to OMP

Core quantities begin 
to be affected
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System identification of KSTAR with time-varying gas puff

• Phase space can be obtained by GP scans for a long enough time 
compared to the relaxation time-scale, instead of series of the 
steady-state density scans

• Not long enough dt (EIRENE) overestimate gas puff but the phase 
space is not significantly distorted

• H-mode has higher density and temperature, so XPR induced 
bifurcation is not likely to be occurred (lack of 𝑇et and density limit)

❑ QSS time-dependent D2 gas scan
• Operation mode: L-mode / H-mode
• Species: D / D+C
• Eirene step dt: 1e-3 s / 1s

Overestimated due 
to small dt (EIRENE)

8e21-1e23 /s
5e20-3e21 /s

H-mode
Keep increases 
and then crash!

crash!
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Corresponding Φgas is unique

Increasing Φgasdecreasing Φgas

Initial condition

target condition

1st transition

2nd transition

1st transition 2nd transition

Unstable zone

hysteresis

?

• Changes in derivative (
𝑑Φgas

𝑑𝑡
) makes 

broadening in the phase space due 
to the delayed responses

• Quasi-steady state ramp up/down 
gives clean curve

KSTAR L-mode bifurcation on the phase space

Attached
branch

Deeply
detached
branch

• Tet can be classification criteria of the branches: attached branch, detached branch, unstable zone (↑↓))
• Bifurcation-like transition is strongly coupled with Tet (either Te,OT or Te,IT)
• Hysteresis observed on the phase space

EIRENE dt = 1e-3
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• Control of plasma state on the phase space is bi-directional in the same branch
• Crossing the branch is unidirectional: makes bifurcation (gap) on the phase space

1st bifurcation

2nd bifurcation

Unstable zone

1) Ramp down just before the 1st bifurcation:
Stays in the same branch with less hysteresis

decreasing Φgas
increasing Φgas

(x)

2) Ramp up right after 2nd bifurcation:
still staying in the attached branch

Attached
branch

Deeply
detached
branch

Directional property test on the attached branch

EIRENE dt = 1e-3

1st transition 2nd transition

Small hysteresis but 
turn back along the 
same curve
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• Coupled system identification performed best with correlated variables Φe,OT and 𝑛e,sep
• 𝑇e,OT: serves as a threshold for bifurcation / 𝑛e,sep: feature identified most strongly
• Phase diagram shows model turnover (--) near inflection points in slope between observed 

variables
• A prediction horizon of at least 500 ms is used, where e models are truncated to within 5% error 

threshold before retraining over a new scrolling interval. First order linear models are identified in 
each interval to avoid overfitting bifurcation discontinuities

[S. De Pascuale]
Fully automated algorithm for system identification with bifurcation

Multiple linear models
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SPARC v2y operation space (time-dep Ne seeding)
Initial condition taken from D2 scan:
D2: 2.6e22 /s, Ne: 1e10
ne,sep ~ 2e20 m^-3
(no hysteresis regime)

• Green, orange: ramp up
• Sky, yellow: ramp down
• Purple, red: towards steady 

state (almost no diff.)

Initial condition

• 𝑇e,OT cooling: Ne > D2, 𝑇e,IT cooling: D2 > Ne
→ Difference in dominant cooling mechanism expected (radiation vs. pl.-neut.)

• 𝑛e,sep, 𝑇e,OT not sensitive to the peak Ne seeding rate while 𝑇e,IT suppression 
behavior depending on Ne seeding rate (shifted but the same structure)

• Simultaneous suppression of 𝑇e,IT, 𝑇e,OT can be only achieved for high seeding 
but 𝑛e,sep decreases → so both more puff/seed required

• Abrupt transition occurs in the phase space with opposite 𝑇e,IT, 𝑇e,OT behavior 
due to the thermo-electric current → This is accompanied by a thermo-electric 
current and is presumably due to the narrow PFR geometry (future work).

D2 scan

D2 scan

D2 scan

Time-dependent Ne scan
1) D2: 1e21-3e22 /s
2) Ne: 1e19-1e21 /s (high seed)
3) Ne: 1e19-5e20 /s (low seed)

shifted

Neon seeding rate
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SPARC “Louvre” actuator design using full time-dependent SOLPS-ITER 
simulation (time-dependent EIRENE) Averaged D2 density

open → semi-trans. at t=0

Open louvre
Semi trans. 
Louvre

“Louvre”

• Louvre controls neutral conductance
• 29MW pure D scenario with a toy 

model geometry (chamber, duct and 
Louvre)

• Full time-dependent SOLPS-ITER 
simulation with dt (B2.5) = dt (EIRENE) 
scans over 1e-6 to 1e-3 s

• Fixed background plasmas to check 
neutral relaxation time

• Saturated number of particle (IPRNL) in 
the census array scales with dt (EIRENE) 
that limits taking too small dt

pump

Not practical
→ requires too much census data 
and computation time

dt (EIRENE) = 1e-6 s 
IRPNL > 1e6

dt (EIRENE) = 1e-5 s
IPRNL ~ 180000 

dt (EIRENE) = 1e-4 s
IRPNL ~ 18000 

dt (EIRENE) = 1e-3 s 
IRPNL ~ 2800

Toy model
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Time-scale of neutral pressure evolution is consistent with analytic 
model [1] and is dominated by pumping speed

Width x 1/4 Length x 4

𝑉
𝑑𝑃

𝑑𝑡
= −𝐶Δ𝑃 + 𝑆𝑃

Analytic model [1]

t=0: open Louvre, no neutral
t=0.1 s: 90% closed Louvre

Duct length x4

Duct width x1/4

• Only extreme changes in duct geometry 
(e.g., duct length 0.1 m → 5 m) affects 
relaxation time scale otherwise pumping 
speed 𝑆 dominates neutral pressure evolution 
time

• Time scale with decreased pumping speed 
agrees with experimental neutral relaxation 
time scale (e.g., C-Mod ~ 100 ms [2])

Length x 50

Duct length x50

[2] C. S. Pitcher RSI 2000[1] J. D. Lore 2019 PPCF 61 065001
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Full-time dependent simulation coupled with plasma on a 
realistic geometry (open to 90% opaque louvre at t=0)

Neutral pressure 
near the strike point

90% opaque Louvre

Open Louvre

Neutral pressure

❑ Simulation setup

• Lower single null

• D only, D2 puff scan

• Input power: 10 MW 

(low power scenario)

• 𝑇e,div~50 eV

• ‘v2y’ geometry

• Full time-dependent
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Actuator equivalence: GP throughput vs. Louvre transparency

90% opaque Louvre
Gas puff = 5e21 /s

Open Louvre
Gas puff = 5e21 /s

Open Louvre
Gas puff = 6e21 /s (+20%)

• Two actuator gives similar 𝑝neut
sp

or 𝑝neut
div with different 𝑝neut

pump

▪ Φpump = Φpuff (pumped flux = gas throughput)

▪ Φpump = 𝑝pump𝑆pump (𝑆pump is pumping speed)

▪ 𝑝pump ~ Φpuff (𝑆pump is const. → thermalized D2 dominates)

▪ 𝑝pump~𝑝strike pt. (relation determined by neutral conductance,

e.g., Louvre condition)

𝑝neut
pump

not 
affected

𝑝neut
pump

increases to 
achieve
puff = pump 
(flux)

equivalent
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Backup Slides
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Introduction - SOLPS-ITER code and B2.5-EIRENE coupling

time cycle
(1 iteration)

NTMSTP * DTIMV

Internal time step (NTMSTP)

EIRENE single run (NTIME iterations)

DTIMV
𝑡𝑖−1 𝑡𝑖 𝑡𝑖+1

fort.15
(not human-readable)

Output (fort.46, fort.44,
fort.xx (user-specified output))

𝑝𝑛 distribution

❑ SOLPS-ITER: tokamak boundary plasma simulation code suite managed by ITER that includes fluid 
plasma solver B2.5 + kinetic MC neutral solver EIRENE

B2.5 coupled
(fluid plasmas,

ignore fluid neutrals)

EIRENE single run

0 DTIMV

Output (fort.46, fort.44,
fort.xx (user-specified output))

𝑝𝑛 distribution

NTIME = 1, NTMSTP = 1, DTIMV = 1e-3

EIRENE standalone

Plasma background

Sources from neutrals

EIRENE coupled with B2.5

Default value

B2.5 standalone
(fluid plasmas, 
fluid neutrals)
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Coupling schemes “usually” assumes quasi-steady-state 
(QSS) neutral approximation

❑ Two EIRENE schemes for coupled simulations
1) Quasi-steady-state (QSS) scheme    

• dt (EIRENE) = 1e-3 s (default),
• dt (EIRENE) for ITER: large (~1e9 s) for ensuring QSS, limited by max CPU time assigned
→ Long-lived neutrals beyond dt (EIRENE) will be cut-off so neutral info can be underestimated 

or distorted (e.g., ionization sources distribution)
→ Long enough dt (EIRENE) gives fully relaxed ionization profile for each EIRENE call, for given 

plasma background, ignoring neutral propagation time
→ Still okay for QSS time-dependent simulation (only B2.5 plasma side) if the phenomenon of 

interest is governed by plasma dynamics rather than neutral dynamics
(i.e., assuming neutral dynamics >> plasma dynamics)

2) Time-dependent EIRENE (full time-dependent SOLPS-ITER simulation)
• dt (B2.5) = dt (EIRENE) = 1e-6 to 1e-4 s (practical range)
• Using the “census data” that records long-lived neutral information (position, velocity and 

weight) in a time-dependent stratum
• Small dt requires more census data → limits practical range of dt

❑ Time steps
• dt (B2.5) = 1e-7 to 1e-4 s
• dt (EIRENE): DTIMV is effectively EIRENE time step for each EIRENE calls (default = 1e-3 s)
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Schematic of volumetric processes coupled with Te

OMP

Outer

target

𝑞∥, Γ∥

Inner

target

Conduction Zone

𝑇e~30 − 50 eV

Radiation, ionization Zone

𝑇e~20 − 80 eV

→ Inspired by M. Fenstermacher PPCF 1999

absence of low 
temperature region 
makes Te large

Detached BifurcationOMP

Outer

target

𝑞∥, Γ∥

Inner

target

OMP

Outer

target

𝑞∥, Γ∥

Inner

target

Recombination Zone

𝑇e~1 eV

Dissociation / Ion-neut. Zone

𝑇e~2 − 5 eV

Ionization Zone

𝑇e~5 eV

(carbon)

Radiation Zone

𝑇e~4 − 11 eV

Recombination Zone

𝑇e~1 eV

Dissociation / Ion-neut. Zone

𝑇e~2 − 5 eV

Ionization Zone

𝑇e~5 eV

(carbon)

Radiation Zone

𝑇e~4 − 11 eV

Attached

P. Stangeby PPCF 2018 A. Kallenbach PPCF 2013



2222 Open slide master to edit

dt (EIRENE) [s]
1e-3

(default)
1.0

1.33e9

(ITER-like)

1.33e9

(ITER-like)

1e-4

= dt (B2.5)

EIRENE scheme QSS QSS QSS QSS
Time-

dependent

NTCPU [s] 50 50 50 90 100

D2 puff rate = 

1e20 atom/s
Particle balance 

not achieved

𝑛e,sep
= 1.1 × 1019 m−3

𝑛e,sep
= 1.1 × 1019 m−3

𝑛e,sep
= 5.1 × 1018 m−3

3e18 with NPRNL = 
200000

D2 puff rate = 

1e22 atom/s

𝑛e,sep
= 1.1 × 1019 m−3

𝑛e,sep
= 2.0 × 1020 m−3

𝑛e,sep
= 2.0 × 1020 m−3

𝑛e,sep
= 2.0 × 1020 m−3

Bb8
(density 급증중)

Sources from the neutrals can be underestimated with 
default dt (EIRENE)

❑ KSTAR L-mode gas puff scan with different EIRENE scheme and time step

• Default EIRENE time step is not sufficient for KSTAR L-mode due to cut-off of the long-lived neutrals
due to long mean free path of neutrals by 1) KSTAR geometry and 2) low density, low 
temperature in given discharge condition

• Lack of the ionization source from cut-off can be compensated by increasing puffing rate
• ITER-like dt (EIRENE) gives the same result as dt (EIRENE) = 1.0 case, limited by CPU time (50 s here)
• Time-dependent run gives the same steady-state solution as QSS scheme ?

/data1/f3p/SOLPS_runs/KSTAR/KSTAR_bifurcation/run

_steady_state_1e20_QSS_eirene_step_dt_1e9_longer

_cpu

Update result
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Time-scale of bifurcation depends on the throughput

IT target flux sum

OT target flux sum
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Time-scale of bifurcation depends on the throughput

IT target flux sum

OT target flux sum
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Target flux bifurcation in KSTAR L-mode experiment

Discharge condition
• 𝐼p = 0.6 MA, 𝐵T = 2.5 T (forward field, ion B×∇B direction 

downwards into the lower divertor)
• External heating power = 0.93 MW (mostly from neutral 

beam)
• ത𝑛e = 2.0 − 3.5 × 1019 m−3 ramped with fixed gas puff 

(1e21/s) without feedback control of fuel throughput
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Majority of C radiation comes from: Te = 4-11eV (over whole region)

< 𝑇e >𝑃rad
C ≡

σ 𝑇e𝑃rad
C Δ𝑉

σ 𝑃rad
C Δ𝑉

,  𝛿 < 𝑇e >𝑃rad
C ≡

σ 𝑇e−<𝑇e>𝑃rad
C

2𝑃rad
C Δ𝑉

𝑀−1

𝑀
σ 𝑃rad

C Δ𝑉
𝑀: number of non-zero weights

• < 𝑇e >𝑃rad
C is well coupled with 𝑇e except for the extreme cases

→ Lack of low 𝑇e region for low recycling cases makes curve deviation
• Main radiators: C1+, C2+, C3+ (< 𝑇e >𝑃rad

C = 1 − 3, 5 − 8, 10 − 11 eV, respectively for 𝑓rad
C > 10 %)

Main radiators
C1+, C2+, C3+

Deviates for 
extreme case only

Most attached case

absence of low 
temperature 
region
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𝑃rad/Vol: radiation spot penetrates core

𝑃rad/Vol
[MWm−3]

(a) (b) (c) (d)

(e) (f) (g) (h)

(a)-(e): steady-state solutions
(f)-(h): time-dependent solutions

Start of bifurcation
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𝑇e: 5eV front penetrates core

𝑇e [eV]

(a) (b) (c) (d)

(e) (f) (g) (h)

(a)-(e): steady-state solutions
(f)-(h): time-dependent solutions

Start of bifurcation



2929 Open slide master to edit

𝑆𝑛𝑎: ionization front penetrates core

𝑆𝑛𝑎
[1019m−3]

(a)-(e): steady-state solutions
(f)-(h): time-dependent solutions

Start of bifurcation

(a) (b) (c) (d)

(e) (f) (g) (h)
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(a)-(e): steady-state solutions
(f)-(h): time-dependent solutions

(a) (b) (c) (d)

(e) (f) (g) (h)

𝑛e: hd zone moves target → Xpt → core (Xpt)

𝑛e
[1019m−3]

Start of bifurcation
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Parallel distribution (OT~OMP) of 𝑛e, 𝑇e, 𝑃rad, 𝑠𝑛 (1st SOL ring)

𝑠∥: normalized parallel coordinate
OT (𝑠∥ = 0) - OMP (𝑠∥ = 1)

• High density zone forms at [target → Xpt], then peak decreases
• 𝑇e(𝑠∥) is always monotonic and 5eV front moves upstream across Xpt
• Ionization front, radiation front moves upstream across Xpt, then peak 

value gradually decreases at further upstream

OT-OMP
1st SOL ring

Xpt

Xpt

Xpt

Xpt

Target OMP

5eV

𝑠∥ = 0

𝑠∥ = 1
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Target flux bifurcation in KSTAR L-mode experiment

Discharge condition
• 𝐼p = 0.6 MA, 𝐵T = 2.5 T (forward field, ion B×∇B direction 

downwards into the lower divertor)
• External heating power = 0.93 MW (mostly from neutral 

beam)
• ത𝑛e = 2.0 − 3.0 × 1019 m−3 ramped with feedback control of 

fuel throughput

▪ Transition happens in 10-30 ms
→ intermediate state in the middle of the target flux 
cliff is unstable

▪ Time scale is similar or longer than the parallel SOL 
transport timescale
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Characteristic of the target flux bifurcation

Target flux rollover
→ stable rollover + abrupt & unstable transition
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Characteristic of the target flux bifurcation

1) Existence of the ‘critical density’:

Bifurcation-like transition to the detached regime happens when ത𝑛e
reaches at ‘critical density’ ത𝑛crit.

2) Hysteresis of ‘critical density’:

[Re-attachment ത𝑛crit.] > [detachment ത𝑛crit.]
→ Representation of divertor condition with delays, implies that there 

can be a better classifier such as divertor (downstream) physical 

quantities rather than upstream quantity, ത𝑛e

detach start

detach end

re-attachLP time series

𝜏∥ ≤ 𝜏𝑏𝑖𝑓𝑢𝑟𝑐𝑎𝑡𝑖𝑜𝑛 < 𝜏⊥

3) Bifurcation time-scale 𝝉𝒃𝒊𝒇𝒖𝒓𝒄𝒂𝒕𝒊𝒐𝒏:

10-40 ms
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Bifurcation is not related with carbon sputtering

➢ Attached state

- strong 𝑞∥𝑡, Γ∥𝑡
- strong sputtering

- strong C rad (𝑌chem↑)

[self-sustained oscillation]

➢ Detached state

- weak 𝑞∥𝑡, Γ∥𝑡
- weak sputtering

- weak C rad (𝑌chem↓)

➢ At least 𝑌chem does not change!

⚫ In JET (with carbon divertor), self-sustained oscillation of the

detached <-> attached states were observed

A. Loarte PRL 1999

⚫ KSTAR maximum target temperature


