Measurements of impurity flows and lineradiation in the W7-X scrape-off layer

V Perseo^{*1}, V Winters¹, DM Kriete², F Reimold¹, Y Feng¹, OP Ford¹, R König¹, S Bozhenkov¹, D Gradic¹, M Jakubowski¹, T Kremeyer¹, M Krychowiak¹, Y Gao¹, G Schlisio¹, D Zhang¹, T Sunn Pedersen¹ and the W7-X Team ¹Max-Planck-Institut für Plasmaphysik, Greifswald, Germany ²Auburn University, Alabama, USA

1. MOTIVATION

- Scrape-off layer (SOL) of W7-X: island divertor, i.e. unique divertor configuration with long L_c in the main SOL domain $\rightarrow \parallel \perp$ transport ratio for particles and heat is affected
- Quantification of $\|/ \perp$ transport for determination of divertor configuration effectiveness \rightarrow here focus on || for particles
- Parallel particle flows: linked to pressure gradient due to distribution of sources and sinks on SOL open field lines \rightarrow Main transport channel to targets along *B*-field for momentum and convective heat, broadened by diffusion across **B**-field
- Comparison with attached and detached plasma scenarios for a thorough analysis

2. MAIN TOOL: COHERENCE IMAGING SPECTROSCOPY

3. CIS OBSERVATIONS

- Data: full OP1.2b (year 2018) after boronization in one magnetic configuration (standard), each data point = 200 ms of plasma (no NBI/pellets experiments, power $P_{in} = P_{ECRH}$)
- C²⁺ radiation: without impurity seeding, linear with total radiated power $P_{rad} \propto Z_{eff} \overline{n}_e^{\gamma}$

MAX-PLANCK-INSTITU

FUR PLASMAPHYSIK

- At W7-X: possible to monitor impurity behaviour with the Coherence Imaging Spectroscopy (CIS) diagnostic
- Main characteristics of the W7-X CIS measurements:
- 2D images of line emission intensity and flow velocity of a selected particle charged state
- Passive measurements of C²⁺ impurity in hydrogen plasmas throughout the entire last operational campaign (OP1.2b, year 2018)
- \rightarrow line-integrated measurements restricted to the SOL by the temperature dependence of
 - the C²⁺ emission, which peak for $T_e \approx 10-20 \text{ eV}$

Example of CIS measurement (C²⁺ impurity, attached scenario)

4. COUPLING BETWEEN C²⁺ & H⁺ VELOCITIES

 $f_{rad} = 0.80$

• $v_{C^{2+}}$ can differ from $v_{H^+} \rightarrow$ in parallel direction $v_{c^{2+}}$ determined by force balance

 $f_{rad} = 0.43$

Average domain for

all the shown data

• C main radiator in W7-X as expected from graphite first wall, \overline{n}_e can be used as actuator for CIS C²⁺ radiation intensity, no direct dependence on input power P_{ECRH}

- Attachment: C²⁺ velocity increases with increasing n_e while staying insensitive to P_{ECRH}
- Detachment: C²⁺ velocity decreases with increasing n_e , drop $\propto P_{rad}$
- Roll-over of velocity and increase in radiation intensity: correlated to increasing f_{rad}

5. PHYSICS INTERPRETATION OF v_{ion} – 1D MODEL

• C²⁺ impurity and main ion coupling in the region probed by CIS \rightarrow explanation of CIS measurements with respect to main ions v_{\parallel}

Line averaged density n_e [10¹⁹ m⁻³]

$v_{C^{2+}} \cong v_{H^+} + \frac{\tau_s}{m_c} (\alpha_{H^+} - 1) \frac{dkT_{H^+}}{dx}$ thermal

- Offset not yet measured but from EMC3-Eirene:
- dominant role of friction for in most of islands
- C²⁺ radiation located between targets and H⁺ ionization region (radial direction)
- Results invariant even at high P_{rad}

- C²⁺ radiation intensity [MW/m³] C²⁺ radiation intensity [MW/m³ \rightarrow CIS measurements good proxy for study of main ion dynamics where C²⁺ radiates
- \rightarrow C²⁺ radiation in regions of H ionization
- Movement of radiation due to change in plasma parameters (e.g. T_e)
- Along open magnetic field line in detachment:
- Shallow T_e profile between radiation front (cyan highlight) and target
- Flattening of v_{\parallel} in the same region
- \rightarrow Movement of radiation changes CIS measurement location but flat v_{\parallel} ensures that CIS results are still representative for what happens in the divertor area

- (simple 1D fluid model)
- Continuity equation in steady state along magnetic field lines (x-direction)
 - & $n = n_i = n_e \propto \overline{n}_e$ (flat density profile):

 $\frac{d\Gamma}{dx} \equiv \frac{d(n v_{\parallel})}{dx} = S_i$ ionisation source $S_i = n n_n \langle \sigma v_e \rangle$

• From experiments in attached conditions: $n_n \sim C \ n \rightarrow S_i \sim C \ n^2 \langle \sigma v_e \rangle$

 $\rightarrow \frac{d(n v_{\parallel})}{du} \sim C n^2 \langle \sigma v_e \rangle \rightarrow \text{if } n \uparrow \Longrightarrow v_{\parallel} \uparrow$

- At high f_{rad} movement of radiation, lifting from the target: n_n not scaling linearly with \overline{n}_e anymore \rightarrow simplification $n_n \sim C n$ no longer valid
- Use of SOL global power balance instead of continuity equation:

 $P_{in} = (P_t) + (P_{\varepsilon_i}) + (P_{rad})$ deposited on targets radiated interactions with neutrals

- At high f_{rad} : $P_t \rightarrow 0$
- $P_{\varepsilon_i} = \varepsilon_i \langle n v_{\parallel} \rangle_t$ $A_t P_{rad} = P_{in} f_{rad}$
- $\Rightarrow \langle n v_{\parallel} \rangle \approx \frac{1}{A_t} \frac{P_{in}(1 f_{rad})}{\varepsilon_i}$
- $f_{rad} \uparrow, \varepsilon_i \& P_{in} \text{ const.} \Rightarrow n \downarrow \text{ and/or } v_{\parallel} \downarrow$
- Observations show:
- both $n \ (\neq \overline{n}_e \text{ at high } f_{rad})$ and $v_{\parallel} \downarrow$

CONCLUSIONS

- Database of line radiation and flow velocity measurements to identify major tendencies:
 - C^{2+} line radiation (without impurity seeding) and C^{2+} flow velocity (coupled with H⁺ in explored measurement conditions) show clear dependencies on plasma parameters, in particular P_{rad} and n_e , and no direct influence of P_{ECRH}
- C²⁺ flow velocities respond to line integrated density increase in both attached and detached plasmas, but in opposite ways
- C²⁺ flow velocities tendencies can be explained with 1D fluid model, characterized by the major role of ionization in the SOL: any change in the source term causes a change in v_{ion}
- Main assumption: constant cross-field transport with plasma parameters change \rightarrow limits of validity to be assessed with future modelling
- Roll over of C²⁺ flow velocities at fixed P_{rad} still under investigation

6. v_{ion} TRENDS WITH P_{rad}

- Due to the different trends of v_{ion} with density at different P_{rad} \rightarrow direct study of v_{ion} vs P_{rad}
- Dataset restricted to avoid major changes of magnetic topology
- Peak value of v_{ion} changing with P_{ECRH} and \overline{n}_e but clear roll over observable at $P_{rad} = 1-2$ MW independently of P_{ECRH} and \overline{n}_e
- Fixed value of P_{rad} for roll over of v_{ion} unexpected and still under investigation

*Corresponding author: Poster No. 100 Conference 4th Technical Meeting on Divertor Concepts valeria.perseo@ipp.mpg.de

