

IAEA ACTIVITIES ON SYNERGIES IN TECHNOLOGY DEVELOPMENT BETWEEN NUCLEAR FISSION AND FUSION FOR ENERGY PRODUCTION

Nicole Virgili, Vladimir Kriventsev, Sehila Gonzalez De Vicente, Luigi Di Pace, Lorenz Gaertner

Technical Meeting on Synergies Between Nuclear Fusion Technology Developments and Advanced Nuclear Fission Technologies 6-10 June 2022

Webex

IAEA, Vienna

Fission

Fission

Fusion

1940

51	on ar	nd Fu	sior	n Tim	neline		Fukushima	3		K O D
				Three Mile Islan	Chernobyl d	GIF (Gen IV In	nternational F	orum)		GENT International IAEA
	Gen I Early Prototype	e Reactors	Gen Comm	II nercial Power	Reactors	Gen III Advanced LWR Advanced BWR	Gen III+ Evolutionary offering imp economics	/ designs roved safety,	Gen IV Highly Economical Enhanced Safety Minimal Waste Proliferation Resista	ance
0	1950	1960	1970	1980	1990 JET	2000 20	010 20)20 20	30 2040	2050 2060
		United Natio Peaceful Us	ns Conferer es of Atomic	nce on the Energy	IT	ER	Start of constru	uction First p	lasma Full performan	ICE
N	Fusion s	still in R&	D phas	se,			DEMO	0	• Start of	construction First power production
			Control	y yet	"Controlled fusion for peac – Gorbachev &	eful purposes" & Reagan	Broader A	pproach	Agreement	Read B
	First	power					JT-60SA			
{USIO	d prod	uction				IFMIF/EVEDA	IFM	IF/DONES		
2									https://www.iter.org/n	ewsline/-/2323

https://de.wikipedia.org/wiki/Experimental_Breeder_Reactor_I

Fission reactors in operation

https://pris.iaea.org/PRIS/home.aspx

- 443 Reactors in operation
- 392 GW Capacity
- 2586 TWh Electricity supplied
- 30 countries (+2 in 2020)

Nuclear Power Plants for industrial deployment

Experimental studies for fusion facilities

https://nucleus.iaea.org/sites/fusionportal/Pages/FusDIS.aspx

- 134 Fusion projects
- 28 countries

Still experimental level R&D needed to verify physics and technology

Fusion Development Challenges

Generation IV reactor designs under development by GIF

Goals	Reactor type	Neutron spectrum	Coolant	Temp. (°C)	Fuel cycle	GW(e)	Use
Highly Economical Competitiveness	Gas-cooled fast reactors	fast	helium	850	closed, on site	1200	electricity & hydrogen
Enhanced Safety	Lead-cooled fast reactors	fast	lead or Pb-Bi	480-570	closed, regional	20-180** 300-1200 600-1000	electricity & hydrogen
	Molten salt reactors	thermal or fast	fluoride salts	700-800	open/closed	1000-1500	electricity & hydrogen
linimal Waste	Sodium-cooled fast reactors	fast	sodium	500-550	closed	50-150 600-1500	electricity
Proliferation Resistance	Supercritical water- cooled reactors	thermal or fast	water	510-625	open (thermal) closed (fast)	300-700 1000-1500	electricity
New applications (process heat, hydrogen production)	Very high temperature gas reactors	thermal	helium	900-1000	open	250-300	hydrogen & electricity

https://www.gen-4.org/gif/jcms/c_40486/technology-systems

https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-power-reactors/generation-iv-nuclear-reactors.aspx

	Present Ge	eneration	Next Generation			
	Fission (Gen II&III)	Fusion (ITER)	Fission (Gen IV)	Fusion (Reactor)		
tructural naterial	Austenitic steels, Zircaloy	Austenitic steels	Ferritic steels, Superalloys? SiC-SiC?	Ferritic martensitic steels, SiC-SiC?		
^{max} structural naterial)	<300 °C	<300 °C	500 – 1000°C	550-1000°C		
PA max nternal omponents)	~1 dpa	~3 dpa (TBM)	~30-100 dpa	~150 dpa		
e roduction	~ 0.1 appm	~30 aapm	~3-10 appm	~1500 appm		

IAEA

Comparable service conditions: high temp. (>500 °C) & high dpa (>100 dpa)

Growing synergies between fission and fusion research towards demonstration plants, F. Carré, Ph. Magaud

IAEA Activity on Fission-Fusion Synergies for **Energy Production**

Nuclear Energy Series on *Synergies in Technology Development between* Nuclear Fission and Fusion for Energy Production

- **IAEA 65th General Conference** ESPACE Event on *Fission* Supporting Fusion Technology Development
- 1st & 2nd Consultancy Meetings on Preparing the Technical Meeting on Synergies in Technology Development between Nuclear Fission and Fusion for Energy Production
- 1st Technical Meeting on Synergies in Technology Development between Nuclear Fission and Fusion for Energy Production

Fission Supporting Fusion Technology Development Nuclear Power Technology Development Section ΙΑΕΑ Division of Nuclear Power Department of Nuclear Energy 51 10% 443 nuclear power of world's years of reactors in ssio reactors under electricity experience operation Can fission help fusion? Fission experience supporting fusion Fronomic Decommissioning 旧台 Infrastructure GC65 ESPACE event Thursday, 23 September 2021 10.30 - 11.00 a.m. CET Conference Room M7, M building, ground floor

Fusion

SYNERGIES BETWEEN FISSION AND FUSION NUCLEAR ENERGY

Nuclear Design and Technology

- Codes and design methods
- High temperature and neutron resistant materials
- Gas, water or liquid metal cooled systems technology
- In service inspection, maintenance in hostile environment
- Dismantling and waste management

Safety approach and licensing

Increased synergies for the Fusion DEMO reactor

- Optimization of blanket design for energy and tritium production
- Demonstration of full tritium breeding and recovery
- Production of initial tritium load

Education in nuclear physics and engineering

- Attraction of young scientists in the fields of nuclear energy
- Stimulation of education and training in nuclear physics and engineering

Towards more integrated Fusion and Fission programs

Context

MSs and **Stakeholders** > Worldwide acceleration towards the early deployment of nuclear fusion for energy production.

- > New initiative aimed at addressing the great engineering challenge of fusion, by promoting:
 - Technology development
 - Transfer of knowledge ٠
 - Common infrastructure

- > Identifying and analysing all the possible synergies on technology development and deployment between nuclear fission and nuclear fusion, with an international perspective beyond ITER and towards DEMO and industrial deployment of nuclear fusion.
- > Will get acquainted of the synergies in technology development between nuclear fission and fusion for energy production, status of cooperation between the fission and fusion communities.
- > Will receive recommendations on how to enhance relevant technology and knowledge transfers from fission to fusion.

Fission-Fusion Synergies for Energy Production

Thank you

Nuclear Power Technology Development Section Division of Nuclear Power Department of Nuclear Energy International Atomic Energy Agency

Website:

https://nucleus-new.iaea.org/sites/fr/Pages/fusion.aspx

Email address:

FFSynergies@iaea.org