

Italian National Agency for New Technologies, Energy and Sustainable Economic Development

RADIATION TESTS ON COMPONENTS FOR THE ITER PROJECT AT THE CALLIOPE FACILITY

J. SCIFO¹

A. CEMMI¹, I. DI SARCINA¹, B. ESPOSITO¹, D. INAUDI², D. MAROCCO¹, M. PASSERI¹, S. PODDA¹, F. POMPILI¹, M. RIVA¹

1 ENEA, Fusion and Technology for Nuclear Safety and Security Department, Italy 2 SMARTEC, via Pobiette 11, CH-6928 Manno, Switzerland

≻Radial Neutron Camera (RNC) and Vacuum Vessel (VV) for the ITER reactor

- ≻Gamma radiation tests at ENEA ⁶⁰Co Calliope facility
- RNC components: scintillators, optical windows, PMTs and single-crystal diamond detectors
- ➢ Vacuum Vessel components: sensors, optical fibers and metallic wires

≻Conclusions

ITER – International Thermonuclear Experimental Reactor Project (1)

- The most ambitious energy projects in the world to demonstrate scientific and technological feasibility of fusion power
- An international collaboration

During the ITER operation time the plasma will give rise to HIGH ENERGY NEUTRON and GAMMA RAYS **Radiation damage and activation on components Radial Neutron Camera** (RNC)

J. SCIFO - IAEA Technical Meeting on Fission-Fusion Synergies - 6-10 June 2022 - Vienna

Vacuum Vessel

(VV)

ITER – Radial Neutron Camera (2)

Experimental Set-Up: ⁶⁰Co Calliope γ irradiation facility (1)

(Picture acquired by remote camera) Maximum allowed activity: 3.7x10¹⁵ Bq (100 kCi) <u>maximum dose rate</u> <u>(May 2022)</u>: 7.4 kGy/h

Pool-type irradiation facility equipped with a ⁶⁰Co gamma source in a large volume (7×6×3.9 m³) shielded cell

- Irradiation tests at different dose rates, atmospheric and temperature conditions and under bias.
- Simulation of gamma field by Fluka/MCNP code (irradiation cell and irradiated samples).
- Online tests and remote acquisition.
- Single camera and touch screen display control integrated system (anomalies and test parameters) monitoring system.

Experimental Set-Up: Calliope dosimetric systems and characterization lab (2)

Dosimetric systems:

Fricke dosimeter (20 - 200 Gy) Absolute dosimeter

Red-Perspex (5-40 kGy), radiochromic (1 kGy-3 MGy) dosim.
Thermo Luminescent Dosimeter (TLD) (1 mGy-100 Gy)
Alanine - ESR dosimeter (1Gy-500 kGy)
Electronic RADFET (0-01 – 1000 Gy) dosimeter

Simulation of Calliope irradiation field with FLUKA & MCNP code

Optical and spectroscopic characterizations

 Climatic chamber: -75°C/+180°C (temperature), 10 - 98 % (humidity), UV lamp (220 - 630 nm) accessory

UV-VIS spectrophotometer

Luminescence measurements

FTIR spectrophotometer

J. SCIFO - IAEA Technical Meeting on Fission-Fusion S. • Furnace (T max = 1200°C)

ESR spectrometer

Colorimeter

Analysis and results on scintillators, optical windows, PMTs and single-crystal diamond detectors

Samples and irradiation tests

✓ N.3 SOLID SCINTILLATORS:

- crystalline Stilbene (InradOptics) (1" diameter, 1" thick)
- plastic EJ-299-33A and EJ-299-34 (Eljen Technology) (1" diameter, 1" thick)

✓ N.2 PMT OPTICAL WINDOWS:

- synthetic silica WMH6614Q (Hamamatsu) (2" diameter, 1.5 mm thick)
- borosilicate glass WM-H6614 (Hamamatsu) (2" diameter, 3 mm thick)

N.2 PMTs (with synthetic silica windows):

- Electron Tubes 9814QB (ET9814) (2" diameter)
- Hamamatsu R7494 Mod (1" diameter)

✓ N.2 IDENTICAL SINGLE-DIAMOND DETECTORS:

• SC0099, SC0105, SC0109 (MICRON Semiconductor Ltd.) (4.5x4.5x0.5) mm³

Absorbed dose up to 100 KGy

Absorbed dose up to 5 MGy

Experimental measurements

Samples characterization performed before and after irradiation tests (RT, in air, in the dark)

TRANSMITTANCE MEASUREMENTS

on

SCINTILLATORS and **OPTICAL WINDOWS**

Perkin Elmer Lambda 950 UV-VIS Spectrophotometer

QUANTUM EFFICIENCY MEASUREMENTS

on PMTs

ENERGY SPECTRUM MEASUREMENTS

on

SINGLE-CRYSTAL DIAMOND

 Measure of energy spectrum of 5.5 MeV α particle emitted by ²⁴¹Am source in a vacuum chamber

Gamma radiation damage test: scintillators (1)

Gamma radiation damage test: scintillators (2)

Gamma Radiation Damage Test: scintillators (3)

Radiation induced damage recovery after 24 kGy absorbed dose

Treatment description

35 days in the dark, at RT

Gamma radiation damage test: Optical Windows (1)

Gamma radiation damage test: Optical Windows (2)

Gamma radiation damage test: PMTs (3)

Quantum Efficiency evaluation (by PMT anodic current measurement) Light source: halogen lamp QTH (100 W)

- ✓ Slight PMT current decrease up to 127 kGy absorbed dose (same results for all PMTs)
- Hamamatsu PMT current around 10 times higher than ET PMTs

Gamma radiation damage test: Single-crystal diamond detectors (1)

Samples	Irradiation parameters	Composition	Producer
SC0099	1 MGy;	Single-crystal diamond	Micron
	dose rate: 300 Gy/h	Contact: TiC/Ag (50nm)	semiconductor Ltd
SC0105	4.66 MGy;	Single-crystal diamond	Micron
	dose rate: 1.4 kGy/h	Contact: TiC/Ag (50nm)	semiconductor Ltd

Optical inspection:

Silver layer seriously peeled and detached at the highest absorbed dose and almost intact up to 1 MGy

Gamma radiation damage test: Single-crystal diamond detectors (2)

Energy spectra with 5.5 MeV α particles (²⁴¹Am source, activity = 2.1 kBq)

Absorbed dose [MGy]	peak [ch]	FWHM [ch]	Energy Resolution %	CCE* %
0.00	5197	69	1.3	100
1.32	5147	79	1.5	99
3.13	5025	93	1.7	97
4.66	n/a	n/a	n/a	0

- Single-crystal diamond detectors have an acceptable behaviour up to 3.13 MGy but with a partial damaging induced by gamma radiation.
- At 4.66 MGy detectors were broken.

Analysis and results on sensors, optical fibers and metallic wires

Samples and irradiation tests

Test has been conducted irradiating displacement sensors to monitor deformation in ITER magnets and Vacuum Vessel

- ✓ SENSORS
- ✓ 50 m long OPTICAL FIBER SPOOLS
- ✓ NiCr METALLIC WIRE
- Samples irradiation tests were performed at RT and in air

```
Absorbed dose ~ 6 MGy
Dose rate ~ 3.5 kGy<sub>Si</sub>/h
```


Gamma radiation damage test: sensors

ACCEPTANCE CRITERIA:

- No significant damage or degradation detected by visual inspection
- Sensors work after irradiation test
- Sensor signal (% modulation) shall be over 6%

Calibration curve variation after irradiation

- No significant damage or degradation have been detected.
- Some darkening appeared on the metallic surfaces, but the sensors have passed the accuracy verification.
- Maximum deviation lower than 1% of the Full Scale (FS)
- Minimum modulation value of 8.7% higher than 6%

Gamma radiation damage test: optical fibers

ACCEPTANCE CRITERIA:

- No significant damage or degradation detected by visual inspection
- Measured insertion loss lower than 0.05dB/m
- To measure the fibre performances, an Optical Time Domain Reflectometer has been used.
- The performances of tested <u>optical fibre spools</u> have been measured at regular intervals during irradiation and at the end of the irradiation test
 - No significant damage or degradation have been detected. The insertion losses are below the fixed limit.

CONCLUSIONS

- Neutron detector candidates for the ITER Radial Neutron Camera were investigated at the ⁶⁰Co ENEA Calliope facility:
 - scintillators: for all samples consistent degradation after γ irradiation;
 <u>Stilbene</u> is heavy damaged also at low doses.
 - Optical windows: no modification on synthetic silica;

serious damage <u>on borosilicate glass.</u>

<u>PMTs</u>: R7494 \rightarrow insensitive to γ rays;

ET9107 \rightarrow consistent degradation with the absorbed dose increasing.

Single-crystal diamond: partial efficiency decrease at 4.7 MGy;

silver layer peeled and detached at 4.7 MGy and almost intact at 1 MGy.

- > The Vacuum Vessel components were investigated at the ⁶⁰Co ENEA Calliope facility
- Sensors, optical fibers and NiCr Metallic wires: no significant damage or degradation have been detected.
- Despite the irradiation parameters employed for the ITER project, they can be considered like those expected in the fission nuclear environments, extremely damaging as ITER.

jessica.scifo@enea.it

111 1010 0000

