

DE LA RECHERCHE À L'INDUSTRIE

Online neutron measurement systems for in-vessel monitoring in fission reactors: applicability to breeding blankets of DEMO

P. Filliatre¹, L. Barbot¹, C. Jammes²

June 8, 2022

IAEA Technical Meeting on Synergies in Technology Development between Nuclear Fission and Fusion for Energy Production

¹IRESNE | DER | SPESI | LDCI

²DRF/IRFM/STEP

Research institute on nuclear systems for low-carbon energy production

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

- Design strategy for neutron measurement systems in fission reactors
- The case of DEMO breeding blankets
- Similarities/differences with fission reactors
- State of the art of some detectors, blocking points for BB use

Requirement: real time, reliable, easy to interpret (i.e. linear)

Dependability = reliability x maintenability

- Can be inserted (think about the cable path!)
- Stringent constraints (temperature, corrosion...)
- Self-diagnosis
- Sensitivity to parasitic signals (e.g. activation gamma)

SYSTEM DEFINITION METHODOLOGY

\Rightarrow Designing a measurement system includes:

- \Rightarrow A comprehensive physical description/simulation of the the system
- \Rightarrow An assessment of the performances/constraints
- \Rightarrow And then we can look for what we have on the shelf, and what to improve...

cea

Input data on HCPB and WCLL of DEMO

Bachmann C. PDD plant description document. - 2021. - EFDA_D_2KVWQZ Del Novo A. et al. WCLL Design Report. - 2018. - IDM EFDA D 2NUPDT Hernandez F. et al. Final report on HCPB design and integration studies 2019. - 2020. - IDM EFDA D 2NKC7G

Commissariat à l'énergie atomique et aux énergies alternatives

cea

Tentative performances/constraints for BB

N flux measurement uncertainty	10%
N flux spatial distribution	10% everywhere
Temporal resolution	1 s
Dynamic range	10 ¹⁴ n/cm ² /s down to 5 decades, DD/DT
Lifetime and maintenance	3 years (same as BU)
Bonus: spectral discrimination	(⁶ Li(n, α)t and ⁷ Li(n,n' α)t)
N flux	10 ¹⁴ n/cm ² /s at FW
Gamma flux	$10^{14} \gamma/cm^2/s$ at FW
Radiation dammage	9.5 DPA/FPY at FW
Magnetic field	3 – 8 T
Steric constraints+cable passage	Sensors of few mm
Temperature	600°C, highly dependent on location

Commissariat à l'énergie atomique et aux énergies alternatives

Something close to BB within fission reactors : monitoring in ASTRID

UWhat is common with BB:

- n/gamma level : 10¹⁰⁻¹⁵ cm²/s
- Need for spatial coverage
- Temperature 400-900°C

□What differs, but not that much:

- Cable passage (through vessel plug)
- Integration from design phases of the reactor, not after!
- Lifetime (several reactor cycles)

UWhat is absent:

• Magnetic field

Self-powered neutron detectors (SPND)

State of the art

Cheap, robust

□Simulation toolbox (Matisse)

• L. Barbot et al., ANIMMA 2017, 170, 08001

Platinum: almost real time linear response in Astrid centre

• V. Verma et al., NIM A 880 (2017) 6

Blocking points for BB use

Extension to fast neutrons

• PhD underway for JHR use

□ Sensitivity to activation gamma

• need for detailed computations

Limited dynamics

High-temperature fission chambers (HTFC)

State of the art

- Several decades experience
- Computation of evolution of fissile coating
 - P. Filliatre et al., NIM-A 593 (2008) 510
- □ Various deposits/spectral discrimination (Chicade facility)
- □ Simulation of neutron/gamma signals in all modes
 - P. Filliatre et al., NIM-A 678 (2012) 139 & 648 (2011) 228
- □ High dynamics (8 decades, precision 5%, experimental validation done at MINERVE)
 - Z. Elter et al., NIM-A 835 (2016) 86
- □ Use up to 800°C experimentally validated (LINAC + oven)
 - H. Hamrita et al., NIM-A 848 (2017) 109

Blocking points for BB use

Leakage current when miniaturizing.

• Qualified chambers of 7mm, but not below.

$\hfill \Box$ Magnetic field effects on moving electric charges

Hardness to radiation field

Former designs

Optical fission chambers (OFC)

State of the art

- □ Innovative concept
 - M. Lamotte, PhD thesis, UGA, 2021
- Developed for neutron flux monitoring in MSR
- \Box Optical transduction: perfect electromagnetic immunity
- □ Various deposits/spectral discrimination
- Excellent linearity by physics
- High dynamics (7 decades, experimentally validated)

Blocking points for BB use

Sealing of the feed-through with a bundle of optical fibres
Thermal (blackbody) noise rejection

• experiments with an oven and neutron sources

Many efforts for fission instrumentations are beneficial for fusion:

- □ General design/integration strategy
- Demanding environments (temperature, high flux...)
- Innovative detectors
- Some specificities require specific efforts
 - Integration
 - Magnetic field
- Future: theoretical/simulation + experimental studies
 - □ Laboratory scale
 - Dedicated campaigns with facilities partially representative of the DEMO conditions

IRESNE | DER | SPESI | LDCI

Research institute on nuclear systems for low-carbon energy production

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr