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Nuclear electricity is more important than ever!

Energy use in the transportation sector

2017 2040 (Baseline) 2040 (Favorable)
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[ N.O. Kapustin. Energy Policy 137, 1103 (2020) ]
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The expansion of the electric automobile
fleet will require a significant growth of
electricity demand.

Electricity usage patterns will be modified as
well. The increased peak loads produced by
EV charging are a challenge for grid stability.
To top it off, the plan is to cover this erratic
demand with irregular generation of
renewable energy.

I[rregularity on both supply and demand is a
recipe for disaster.

This issue does is not apparent or pressing
now due the current modest size of both the
electric fleetand RES generation.
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Nuclear power today

443 nuclear power reactors were operational, with
a total net installed power capacity of 392 GW(e).

54 reactors (57 GWe) were under construction.

6 new nuclear power reactors (5.2 GWe) were
connectedto the grid in 2019.

13 reactors (10.2 GWe) were retired last year.
5 new reactors (6 GWe) broke ground in 20109.

Electricity production from nuclear power reactors
increased about 4% with respect to 2018,
reaching 2 657 TW-h.

Nuclear power accounted for 10.4% of total
electricity production in 2019.
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Fuel availability

Table 1.1. Changes in identified resources (recoverable) 2015-2017 * Currentnatural U

Resourcecategory | 2015 | 207 | Change(1000)® | echange Sk et il
R t 2017 Ch 1 000 tU)@ % ch .
SSOTIEE cateaoty ange ( : SHangs reactor fleet is on the order of

Identified (total)

<USD 260/kgU 7641.6 7 988.6 347.0 4.5 60000 tons/yr

<USD 130/kgU 57184 C 61422 D 423.8 7.4

<USD 80/kgU 21247 20795 -45.2 2.1 . Considering reserves with

<USD 40/kgu® 646.9 1057.7 410.8 63.5 130 USD/kg, they will last

RAR

<USD 260/kgU 4386.4 4815.0 428.6 9.8 about 100 years (6000

<USD 130/kgU 3458.4 3 865.0 406.6 1138 Gg/60 Gg/yr)

<USD 80/kgU 12236 1279.9 56.3 4.6

<USD 40/kgU® 478.5 713.4 2349 49.1 . .

| * Anyincrease in reactor fleet

nferred resources ) )

<USD 260/kgU 3255.1 3173.0 82.1 25 will reduce this number

<USD 130/kgU 2 260.1 2277.0 16.9 0.7

<USD 80/kgU 901.1 799.9 -101.2 -11.2 :

<USD 40/kguU® 168.4 344.4 176.0 104.5 ’ Gomg_to 1 TW of nuclear
(@) Changes might not equal differences between 2015 and 2017 because of independent rounding. electrical power (25% Share)
(b) Resources in the cost category of <USD 40/kgU are likely higher than reported because some countries have indicated W||| make reserves |aSt Only

that detailed estimates are not available, or the data are confidential.

40 years.

[ OECD Uranium 2018 Report ]
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Nuclear Spent fuel

Typical light water reactor spent fuel composition
* Forevery GWe, around 30 tons/yr

100% of spent fuel are generated
* Thatgives 12,000 tons generated
98% each year
W Actinides e About 1/3 of the U-235 remains
96% mEP in the spent fuel
e Otherfissile material is present
94% Pu239 (Pu-239)
mU 235 * 94% of the waste mass is inert U-
92% 238
muU23e * This material should not be called
90% “waste”

Fresh Irradiated (3 yrs)
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Spent fuel radiotoxicity
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Elimination of minor actinides (less
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reduces the radiotoxicity of the
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Nuclear fuel irradiation with fast neutrons

* Exposure of nuclear fuel assemblies to a flux of high energy
neutrons can:
e Convert some fertile material to fissile material
e Destroy minor actinides by neutron absorption or fission

* The neutron energy will determine the balance between breeding
and burning.

* For breeding, neutron energy below 1 MeV is desirable
* For actinide destruction, neutron energy above 1 MeV is desirable
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Why a hybrid?

e Fusion systems produce fast neutrons (14 MeV), completely
decoupled from the fission process.

 Alternate technology for fissile material breeding.
e Possibility of burning minor actinides.

* Build operational experience on fusion technology under nuclear
conditions.

* Tritium breeding/recoverytechnologies.
* Long term exposure of components to neutron fluence.

* Insertion of fusion technology in an active economic cycle (nuclear
fuel industry).
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The need to multiply neutrons

* Fusion reactions between deuterium and tritium produce 14.5 MeV
neutrons:

{H + iH—>3He + jn

e Each tritium consumed generates a neutron.

* The neutron can be used to produce a tritium by reaction with Li-6:
n+ 8Li—3H + 4He

e But if each neutron is used to replenish a tritium, there are no
leftover neutrons that can irradiate nuclear fuel in a hybrid!

* Thus, materials that can multiply neutrons need to be introduced in
the system.
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Lidsky™ nuclear hybrids taxonomy.

(e Symbiotic: systems in which fuel is produced for consumption in )

physically separate fission reactors, with fission reactions -
suppressed (fuel breeder, relevant to front end). §
* Augean: systems in which fission reactor waste products are o
. . L -

transmuted to less toxic form (minor actinide burner, relevant to
\_ back end). ) -
* True Hybrid: systems in which an energy-multiplying fission blanket 0%
surrounds an idealized fusion reactor (fusion-driven fast reactor). ?_32’

[ L. M. Lidsky. Nuc. Fus. 15, pp. 151-173(1975) ]
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Conventional closed nuclear fuel cycle
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Nuclear fuel cycle incorporating fusion-based neutron irradiators
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The big question...

e How does this fast irradiator look like?

* A suitable irradiator can be designed based around any fusion
technology alternative, from plasma focus to stellarators.

* The key is that it must provide sufficient neutrons to do
homogeneous fuel processing in a reasonable amount of time.

* For this particular study, we decide to look at a spherical tokamak
configuration.
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Overall scheme of a fusion fast neutron irradiator
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A clear advantage of a spherical tokamak

76m For a given neutron power,
which configuration gives
larger neutron flux to the

fuel assemblies?

7.6m

28
MAST-like ”

JET-like
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General anatomy of the hybrid system
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Conceptual use case
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Critical issues for viability

* The system should be self-sufficient in tritium. Estimation is on the
order of 150 kg/GWyr (heutron power).

* For fuel breeder, the system should be able to get the fuel ready to
be placed in a thermal reactor in a reasonable amount of time (i.e.
refueling cycle, 1.5 years).

* Energy expenditure for enriching should be smaller than the energy
of enriched material (how small?).

» Cost should be competitive with open cycle (new fuel + disposal)
and reprocessing (exchanging used fuel for new fuel)
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- Center stack

P Poloidal field coils
HT-9 Steel walls

I Toroidal field coil

Criteria

* As simple as possible (i.e. no NBI,
NO cryogenics).

Tritium breeding

- Meutron multiplier
« I veutron reflector

e Small surface to volume ratio
(maximizes flux per unit power).

* Replaceable as a module.

* Able to process existing fuel to
support existing LWRs.

» Geometry fixed to CFNS design”

38

[ *M. Kotschenteuther. Nuc. Fus. 50,035003 (2010) ]
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The three things we need to know

* How many neutrons are we producing externally and where are
they produced?

e What is the value of the neutron flux at each location within the
system?

* At what rates species are being produced/consumed due to the
neutron bombardment?
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Simulation scheme.
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N e utron SO u rce pa ra m ete rS I - — Temperature

- = = Density

20 4

Temperature (keV)
Density (102 m™¥

Parameter Value

Neutron wall load (MW/m?) 1
Major radius (m) 1.35 '
Minor radius (m) 0.75 . - - - - - 4
Plasma current (MA) 10-14 Magnetic coordinate,

Centralfield (T) Density and temperature profiles obtained from
Average density (102° m-3) 1.3-92 ASTRA using ST transport models™

Average temperature (keV) 15
Plasma volume (m3) 42

I
©

[ *A. E. Costley. Plasma Pys. Cont. Fus. 63,035005 (2021) ]
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Materials choices for the hybrid

e Critical materials are:

Case Neutron Tritium breeder Blanket Shields
* The tritium breeder (a Multioli Coolant
compound contamlng Li-6 uttipfier oolan

Isotope) Base Li,O
 The neutron multiplier

(containing Be, Zr or Pb) Be Li,0 He Pb-Bi

* The neutron shield (Pb, Pb- FLiBe Li,O He Pb
Li, Pb-Bi) FLiBe Li Li Pb-Li

Ir:]eelizlr?: L((3(?;(2?(I)i(c;|lt? ir(]jtmetals) JUISE = 1S il
Be Li,O He Pb-Li

Be Li,O Li Pb
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Effect of material choices on neutron flux

1.E+16 £
s @  The mostimportant variation in neutron flux intensity occurs
1E15 ¢ % = in the radial direction.
"  The base case, case A and case E case are virtually identical,
= . so their symbols overlap. This is an indication that the
N; LERAE . % reflector material choice has very little influence on the
= OBase performance of the system.
= oA o « Cases C and F stand out because they are consistently lower
*% LES Y ii ° than the other cases for the blanket region (R >4 min the
= <D x Figure), and those correspond to the cases when Liis used as
mE . coolant in the fission blanket
1EHI2 ¥ oF ° * Case D, correspondingto a FLiBe neutron multiplier and a Li
breeder, has the opposite behavior, giving the highest flux in
o the blanket.
| Es11 A R S I
0 2 4 6

Radius (m)
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Neutron energy distribution on multiplier
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PFC PLENUM SPACE

Tritium production pia
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Tritium production per unit volume
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Time to enrichment calculation
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Fissile material generation rate

Case 233U production rate (g/day) Time to 3% enrichment
(months)
Zone 1 Zone 2 Zone 3
Base 97.32 17.2 6.5 19
A 08.67 17.14 6.44 19
B 110.84 20.04 7.68 17
C 68.6 8.14 4.66 29
D 121.4 22.52 8.1 15
E 96.44 17.27 6.32 19
F 50.12 6.04 0.84 41

KEN AND MARY ALICE
@ PennState LINDQUIST DEPARTMENT

OF NUCLEAR ENGINEERING



Final thoughts

* Given the fact that the electric production and consumption landscapes are at the
edgedc_)f a radical transformation, nuclear electricity should play a role in this new
paradigm.

* Fusion neutronsources have the potentialto help solve challenges in both the front
end and the back end of the current nuclear fuel cycle.

* In that context, a business case can be developed around fusion neutron sources,
which will accelerate the maturity of fusion technology and help remove uncertainties
around material, fueling and radiological safety issues on fusion devices.

* Our preliminary analysis shows thata 250 MW ST can achieve tritium self sufficiency
and enrich 260 PWR fuel assemblies to 3% enrichment within the standard refueling
frequency (capable of four 4-loop PWR refuels).

* FLiBe was found to be an attractive neutron multiplier since it gives a high tritium
breeding ratio and 15 monthsto achieve 3% fuel enrichment.

 Lithium oxide was found more efficient than metallic lithium for tritium breeding.
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