Technical Meeting on Synergies in Technology Development between Nuclear Fission and Fusion for Energy Production, Jun. 06 -10, 2022. (IAEA Headquarters)

Research Progresses and Challenges for CFETR Fusion Reactor

Jiansheng Hu, Kun Lu and CFETR team

hujs@ipp.ac.cn

Institute of plasma physics, HFIPP,

Chinese academy of Sciences, China

1. CFETR overview

- 2. Progresses and challenges
- **3. Technology supports**
- 4. Summary and outlook

1. CFETR overview

- 2. Progresses and challenges
- **3. Technology supports**
- 4. Summary and outlook

China Fusion Roadmap

ASIPP

J.S. Hu

3

CFETR missions

Steady-state operation for fusion energy

Breeding tritium for T self-sustained

P = 200-1500MW
 Q = 1-10, SSO
 Q = 20-30, hours
 High energetic α heating

5. Hybrid OH+BS+CD

- 6. SSO Ext H&CD + Higher fb
- 7. PSI on the first wall
- 8. Heat & particle exhaust on Div.

9. T-breeding by blanket
10. T-plant: extract & reprocessing
11. Materials & components
12. Reliable and quick RH
13. Licensing & safety

CFETR main Parameters

m

- P_{fusion} : 200-1000MW
- TBR > 1
- **Duty time \geq 0.5**

CFETR operation Parameters

Parameters	ITER	EU DEMO (2hours)	JA DEMO (SSO)	CFETR (SSO)	K-DEMO (SSO)	EU-DEMO Op 2 (SSO)
R/a	6.1/2	9.0/2.9	8.5/2.42	7.2/2.2	6.8/2.1	7.5/2.5
Aspect ratio	3.1	3.1	3.5	3.3	3.2	2.7
B _{T0}	5.3	5.9	5.9	6.5	7.4	5.6
lp	15	18,	12.3,	12-14	12,	22,
q	3.0	3.9	4.1	5	7.5	3
Elongation,	1.75	1.65	1.65	2	2.0	1.8
triangularity	0.45	0.33	0.33	0.5	0.625	0.5
Fusion P.(GW)	0.5	2.0	1.5	0.1-2.0	1-2.0	3.0
Heating P.(MW)	73	50	83.4	80	150	150
G. output (GW)	0	0.5	0.25	0-0.8	0.4-0.7	0.9

CFETR building and radiation

Radiation zoon definition of the

CFETR main building complex

w	Working places		Radiation dose	Present/Access	
Ν	lon-radiati	on	/	/	
	Monitor	Blue	≤ 2.5 µSv/h	<2000h in one year	
Radiation		Green	≤ 10 µSv/h	Regular access, <2000h in one year	
	control	Yellow	≤ 1 mSv/h	Access control	
	control	Orange	≤ 10 mSv/h	Access limited	
		Red	≥ 10 mSv/h	Access prohibited	

CFETR design team

Physical design(2013-2016) Engineering design (2017-2021)

J.S. Hu

8

- >800 persons in >30 Inst.&Univ.
- 87 task forces
- Important review meeting >20
- Fusion plus fission researcher

CFETR Data Management

> Engineering data:

• 3D part/components, physical interface

Management data

• Project management, Document management,

Design Collaboration

- Account Data
 - Account, Password, Access right for each account
- Networking and Security
 - Assure the security of data transfer and Design

Collaboration

Design collaboration system based on data

management and networking

1. CFETR overview

2. Progresses and challenges

- **3. Technology supports**
- 4. Summary and outlook

CFETR design progresses

Physical design(2013-2016) Engineering design (2017-2021)

- ✓ Defined physical and engineering parameters and requirements
- ✓ Established design rules and standards, interfaces for most systems
- ✓ Built integration design, communication and data exchange platforms
- ✓ Completed design of main machine and most sub-systems
- ✓ Made RAMI (Reliability, Availability, Maintainability, Inspectability) analysis
- ✓ Proposed neutron radiation related material develop map
- ✓ Analyzed neutron radiation distribution, building design and construction
- ✓ Made strategy for assembly, remote handling, decommission, waste disposal
- ✓ Analyzed fusion nuclear laws, rules and safety for license application

CFETR Integration

Completed designs

- ✓ General integration rules, CAD design manuals and standard
- ✓ VPM import, layout, interface for all 3D models
- $\checkmark\,$ Overall assembly process and tooling design
- $\checkmark\,$ Assembly benchmark net and measurement

Challenges:

- High precision, low tolerance
- Lots interfaces with components,

sub-systems

CFETR superconducting coils

16 TF coils, 8 CS coils: 7 PF coils

High Tc Nb3Sn, NbTi/ Nb3Sn

ASIPP

	ITER TF	EU-DEMO ^[2015]	CFETR TF	CFETR TF (Option 1)	CFETR TF (Option 2-2)
No. of Coil	18	18	16	16	16
Operation current	68 kA	81.7 kA	87.6 kA	96.8 kA	95.6 kA
Inductance	17.34 H	32.68 H	34.93 H	25.8H	26.742H
Total storage energy	40.1 GJ	109.08 GJ	134.02 GJ	135.3GJ	136.37GJ
storage energy(single coil)	2.227 GJ	6.06 GJ	8.376 GJ	8.45 GJ	8.52GJ
Discharge time constant	11 s	23s	20 s		17 s
Quench protection resistance	-	-	109.1mΩ		98mΩ
Maximum voltage	5954 V	6450 V	9562 V		9.37 kV

High magnetic field, high current and voltage, high storage energy, coils joint and isolation, quench

detection and protection, radiation heat load, etc.

CFETR vessel, cryostat, Shield

> manufacture for robust vacuum or pressure large chamber

Challenges:

- > lots interfaces, Iteration with physical and engineering requirements
- > Different load and complex stresses (EM, Heat, Thermal, Radiation)
- > High requirement for engineering Feasibility, compatibility, stability

CFETR Divertor

J.S. Hu

ASIPP

72 divertor modules, each one ~11 tons Phase1: 10MW/m² (SSO), 20MW/m² (Transient) Phase2: 20MW/m² (SSO), 40MW/m² (Transient)

- Target and structure material directly under neutron radiation, heat flux and EM force
- Structure and Targets shaping optimization under thermal hydraulic load & EM load
- Compatibility with plasma performance, fuel cycle, particles exhaust, remote handling

15

CFETR auxiliary heating

2 NBI with D0; Beam energy 1 MeV; Beam power: 40 MW; Duration: 4 h

Performance of 230GHz ECCD (Za = 0 m) (a) ECCD (kA/MW); (b) Peak location of J_{CD}; (c) 2nd Harmonic absorp. ratio (%)

ECRH 170GHz / 30MW

4.6GHz 500kW/CW Klystron model and structure

LHCD 4.6GHz, 20MW

ICRF 40-80MHz, 12MW; Three options: antenna, port

- Total effective >80MW, Long operation, stability
- Compatibility with Neutron screening blanket and material
- Antenna with good coupling and heating, remote replace
- High quality wave components, High voltage power supply (1MV)

CFETR particle exhaust and fueling

- Deuterium and Tritium recycling
 D-T fueling/pumping ~290 Pa·m3/s
 - > 10 cryopumps (68m³/s), shift running
 - Pellet injection, SMBI, gas puffing

DT steady-state operation

- Compatible with T (pump, valve, instrument, etc)
- Neutron radiation and remote handling
- Remote leak detecting, positioning and repairment

CFETR proposed Blankets

helium-cooled blanket

- ➤ TBR ≥1.1 for fuel cycle, and its balance with power generation
- Neutron energy deposition and wall load @Fusion power = 1GW, 2GW
- > Non-united Structure influenced by configuration, diagnostics, heating, etc.
- First wall and structure material under neutron radiation, heat flux and EM force
- Tubes forest with various requirement and their joint in a limited place
- Compatibility with remote handling

CFETR Tritium cycling systems (T-plant)

Simple block diagram of CFETR tritium plant > ~2kg tritium for startup, 4500s of time span for cycling

- Inner cycling: ~357g T/shot, 2m³(D₂,T₂)/h for TEP and SDS, >4m₃/h for ISS
- Outer cycling: tritium extraction every two weeks to get more than
 200g of pure tritium from the breeders.
- Tritium confinement: 3g/a of environmental tritium release at current stage, to be minimized as 0.6 g/a for the future
- Tritium recovery, isotopic separation from plasma exhaust gases and re-fueling to torus.
- > Tritium extraction and measurement from in the full breeding blanket.
- Tritium confinement and effluent detritiation

CFETR remote handling

- > Strategy with high efficiency, high reliability
 - Replace blanket and divertor module
 - Maintenance in vessel: cut/joint, detect,

installation/dismantle, positioning, etc.

- Multi-system synergism remote control
- Methods and standard in fusion reactor

CFETR Nuclear Safety Research

J.S. Hu

ASIPP

Studies on Laws, regulations, permissions, license, etc.

- > Accidence analysis
- Radiation protection
- Safety regulations
- Construction permission
- > Operation permission
- Tritium permission
- Decommissioning regulations
- > Waste disposal

CFETR material develop map

	2020	2030s	2040
FW: W, W alloy	3-5dpa	10dpa, CFETR	20dpa, CFETR
Advavced W	1E25-1E28 PSI	CFETR	CFETR
Divertor			
ODS-Cu, Cu alloy	10dpa	50dpa, CFETR	100dpa, CFETR
Structure Material			
Low active FS	5dpa, 1000T	50dpa, CFETR	100dpa, CFETR
ODS-LFS	10dpa, kg	50dpa, CFETR	100dpa, CFETR
Breeding Material			
Li ₄ SiO ₄	specification, T level	fix, CFETR	CFETR
Li ₂ TiO ₃	specification, T level	Fix, CFETR	CFETR
Neutron multiplier			
Be12Ti	Fission reactor	fix, CFETR	CFETR
Resistance tritium			
layer			
	500C, 1000	500C, 1E4, CFETR	500C, 1E5, CFETR

CFETR other Systems

- Cryogenic System: 4.5K equivalent thermal load of 100kW
- Water cooling: Severing various system, high pressure/temp.,

Nuclear + non-nuclear-related cooling circulation

- Diagnostics: Nuclear environment, integration design, etc.
- Plasma control: P-EFIT/ISOFLUX etc.
- Power supply : magnetic coils, heating system etc.

Water Cooling System

1. CFETR overview

- 2. Progresses and challenges
- **3. Technology supports**
- 4. Summary and outlook

Experiences from EAST

- ✓ Full superconducting coils, flexible configuration(USN, LSN, DN)
- ✓ NBI, LHCD, ICRH, ECRH auxiliary long heating system
- ✓ W/Cu divertor to exhaust 10MW/m² heat flux
- Record steady-state operations with stable systems for integrated control of configuration, plasma heating, particle/heat flux
- ✓ More than 80 diagnostics

Technologies based on ITER

- •68% PF conductor
- •100% CC
- →100% current lead
- Glow Discharge Cleaning
- →68% Power supply
- •ELM coil
- →100% Feeder system
- →7% CC Conductor →50% shield blanket

ASIPP

Validation and verification for key technology

CRAFT (Comprehensive Research fAcility for Fusion Technology)

- $\checkmark\,$ National big project launched in 2019, and will finish in 2025
- ✓ Magnet Research Platform (Diameter >13m; Max Current 100kA)
 - ——low Temp. Material, Conductor, Magnet, TF Coil, Bi2212 CS Coil, CSMC
- ✓ Divertor Material PWI Research Platform (>1000 s; >1x10²⁴ m⁻²s⁻¹, >3 T)
 - ——PFM, Divertor, 1/8 Vacuum vessel, N-NBI, ECRH, LHCD, ICRF, RH
- ✓ Auxiliary system: Central control, Power distribution, Cooling, Cryogenic, Power supply

International and Domestic Collaborations

Fusion + Fission field Inst. + University

Summary and Outlook

- 1. CFETR physical and engineering design almost finished with 45% machinable drawing.
- 2. Challenges need to be overcome for construction, specially on nuclear related license application, materials under neutron radiation, key technology developments.
- 3. Technologies of EAST, ITER and other fusion/fission devices would be scaled for most CFETR systems. Key technologies for CFETR are under R&D in the CRAFT project.
- 4. Collaborations strengthened in both international and domestic. Fission researches would support CFETR on nuclear data, nuclear safety, T and other nuclear material, construction/operating/dismission for nuclear facility, etc.

Thank you for attention!