(a,n) neutron yields for direct search of Dark Matter

Roberto Santorelli

CIEMAT

IAEA Technical Meeting on (α ,n) nuclear data evaluation and data needs 08/11/2021

The Dark Matter problem (💪)

- The ΛCDM model has been successful explaining CMB, large scale structure etc..
- It fits all the observations with only 6 parameters
- A Cold Dark Matter model is necessary for the formation of structure and galaxies in the universe

Roberto Santorelli - IAEA (α ,n) Meeting 08/11/2021

- Invisible dark matter makes up most of the universe but we can only detect it from its gravitational effects
- The nature of dark matter is one of the most fundamental problems in modern physics and cosmology

WIMPs

The Galactic DM Halo

- Dark Matter distributed in a spherical halo around the Milky Way
- Isothermal Maxwell-Boltzmann velocity distribution 220 km/s and V_{esc}=544 km/s
- V_e~245 km/s WIMP velocity relative to Earth
- Local density = 0.3 GeV/cm³ J.Bovy S.Tremaine APJ 756 2012

 $(1e^5 \text{ cm}^{-2}\text{s}^{-1} \text{ for } M_W = 100 \text{ GeV/c}^2)$

GOAL: Low energy nuclear recoil

Possible scalar (coupling to the mass of the nucleus) and spin-spin interactions (coupling to the nuclear spin) $m_w = WIMP mass (~GeV-TeV)$

= WIMP-nucleus and WIMP-nucleon scattering x-sec ($\leq 10^7$ pb)

 ρ_0 = local WIMP density

 $\rho_0 \sim 0.3 \text{GeV/cm}^3 \rightarrow 3000 \text{ wimp/m}^3$, $m_W = 100 \text{GeV}$

Experimental signature

- WIMPs are excellent candidates for particle DM
- WIMP mass ~1 GeV 10 TeV and cross sections 10^{-40} 10^{-50} cm²
- Nuclear recoils ~ 10s keV
- Featureless recoil spectrum (no bump)
- Single scatters (uniform throughout the detector)

- Rate variation (June December ~3%)
- Direction asymmetry (Daily rotation)

Annual modulation (\sim 7%) \rightarrow Additional signature

Signal vs Background

DD backgrounds: α

• α : higher energy depositions

DD backgrounds: μ

10-2

- α : higher energy depositions
- μ : underground + veto

DD backgrounds: γ , β

- α : higher energy depositions
- μ : underground + veto
- • γ,β : ER \rightarrow shielding + <u>discrimination</u>

DD backgrounds: γ , β

- α : higher energy depositions
- μ : underground + veto
- • γ,β : ER \rightarrow shielding + <u>discrimination</u>

DAMA (LNGS) ANAIS (LSC) COSINE (Yangyang)

12

DD backgrounds: n

- α : higher energy depositions
- μ : underground + veto
- • γ,β : ER \rightarrow shielding + discrimination
- n : neutrons can produce nuclear recoil in the WIMP search region of interest
 - → Potential irreducible background

Multiplicity

Simulated neutron multiple scattering: ~70% of neutrons produce multiple site events

DD backgrounds: n-produced externally

Passive and active shielding can mitigate the impact of the neutrons produced externally

- Cosmogenic (spallation, βn...)
- Neutrons from the rock
- Radiogenic neutrons from distant materials

Radiogenic n from detectors materials

- Radiogenic neutrons from the parts surrounding the active volume
- *"Limited" tagging capability*

Strategy:

- Extensive material assay campaign
 - U-238, Th-232, U235... contamination
- \succ (α ,n) n-yields calculations
 - Codes (SOURCES4C, NeuCBOT, SaG4n)
 - Libraries (JENDL, TENDL...)
- ➢ MC simulation
 - G4, FLUKA...

Radiogenic n from detectors materials

- Radiogenic neutrons from the parts surrounding the active volume
- *"Limited" tagging capability*

Strategy:

Extensive material assay campaign

- U-238, Th-232, U235... contamination
- \succ (α ,n) n-yields calculations
 - Codes (SOURCES4C, NeuCBOT, SaG4n)
 - Libraries (JENDL, TENDL...)
- ➢ MC simulation
 - G4, FLUKA...

²³⁸U chain

loberto Santorelli - IAEA (α,n) Meeting 08/11/2021

1

<u>(a,nγ)</u>

The correlated gamma emission is fundamental for understanding the background in Dark Matter

N-yields: Values for 1 ppb Th-232 and U-238 (U-235 with its natural abundance)

Typical elements

• Try to avoid Be and B, F (as much as possible)

- Resistors \rightarrow Al, N, B (+Si, Mg...)
- PCB \rightarrow C, N, O...
- Acrylic \rightarrow C, O
- Teflon \rightarrow C, F
- Mechanical parts \rightarrow SS, Cu, Ti...
- Target \rightarrow Ar, Xe, Ge....

(a,n) on Argon

(α,n) yield in low background experiments WG

 "(α,n) yield in low background experiments" Workshop 21-22 November 2019, CIEMAT, Madrid, Spain <u>https://agenda.ciemat.es/event/1127/</u>

- WG including ~ 35 researchers from several experiments (ANAIS, CRESST, DarkSide, DEAP-3600, LZ, nEXO, XENON, PICO, SNO+, SuperCDMS,
- alphan@ciemat.es
- Snowmass2021 LOI: "Neutron yield in (α,n)-reactions in rare-event searches" <u>link.pdf</u>
- "White paper on (α, n) neutron yields in low-background experiment" in preparation

White paper

- Process description
- Key isotopes
- Cross-sections and available databases
- Calculations tools
- Significant uncertainties
- Impact of (a,nγ) on the background estimate
- Importance of new measurements

Conclusions