$^{16}O(n, \alpha_0)$ cross section measurement at GELINA

S. Urlass¹, A. Plompen², A. Junghans¹, S. Kopecky², R. Beyer¹, T. Kögler¹, A. Göök², M.Nyman², C. Paradela², P. Schillebeeckx² and L. Tassan-Got³.

November 11, 2021

¹ HZDR ² JRC ³ IJCLab

¹⁶O(n,α₀) reaction measurement at GELINA
 renormalization of ¹⁶O(n,α) and ¹³C(α,n) cross section data

$^{16}\mathrm{O}(\mathrm{n},\alpha)$ reaction measurement at GELINA

Flight Path (FP) station 16-60m:

- neutron beam diameter: 63mm
- duration: 2 weeks (9.5 days)
- rep. rate: 400Hz

Detectors:

- H19 fission Ionization Chamber[1]
- Frisch Grid Ionization Chamber (FGIC)

Experimental Setup

H19 (61.4 m):

- $10x^{235}U$ deposits
- 1x readout
- deposit diameter: 76 mm
- total deposit mass: 200 mg

FGIC (60.5 m):

- cathode, grid and anode
- active volume (target) between cathode and grid
- counting gas: 95%Kr + 5%CO₂
- pressure: 2 bar

Analysis of wave forms from digital data acquisition

H19:

- time-of-flight t_{ToF}
- pulse height

 \Rightarrow FF selection

FGIC:

- time-of-flight t_{ToF} \rightarrow cathode
- drift time t_{drift} \rightarrow anode - cathode
- rise time *t*rise

 $\to \mathsf{grid}$

• pulse height E_{dep} \rightarrow anode

 \Rightarrow cuts for t_{ToF} , t_{drift} , t_{rise} and E_{dep} for (n, α) selection

Figure: Wave form traces from FGIC.

The neutron spectrum (H19)

- FP16-60m spectrum absolute normalization measured with H19
- spectral shape has good agreement with FP16-30m spectrum[2]
- energy region for ${}^{16}O(n,\alpha)$: 2.35 MeV 9 MeV

Selection of charged particle events

Selection of (n, α_0) events (Time-of-Flight)

- ${}^{16}O(n,\alpha_1)$, ${}^{16}O(n,\alpha_2)$, ${}^{16}O(n,\alpha_3)$ and ${}^{12}C(n,\alpha)$ events not separable
- ${}^{16}O(n, \alpha_0)$ events separable above 1.5 μ s (E_n < 9 MeV)

Time-of-flight spectra comparison with evaluated data

- normalization region between 1900 2200 ns (4.0 5.3 MeV)
- above 1800 ns (below 5.6 MeV): ${}^{16}O(n,\alpha) = {}^{16}O(n,\alpha_0)$
- Experimental Time-of-flight resolution (27 ns FWHM)

Cross section renormalization of evaluated data

normalization region between 4.0 - 5.3 MeV

Sebastian Urlass

Cross section renormalization of ${}^{13}C(\alpha,n)$ data

- using detailed balance to transform ${}^{13}C(\alpha,n)$ to ${}^{16}O(n,\alpha)$ data
- normalization region between 4.0-5.3MeV

Uncertainties

$$\frac{C}{E} = \frac{\varepsilon_{\text{FGIC}}}{\varepsilon_{\text{H19}}} \frac{N_T^{160}}{N_T^{235U}} \frac{N_{\text{FF}}}{N_{\alpha_0}} \frac{\langle \sigma_{n,\alpha}^{160} \rangle}{\langle \sigma_{n,f}^{235U} \rangle} \text{ , } \Delta \frac{C}{E} = 5.8\%$$

quantity	value	unc. (%)
²³⁵ U(n,f) events N _{FF}	37000	0.5
$N_{\rm T}^{235\rm U}$ (atoms/b)	$1.138 \ 10^{-5}$	0.3
inhomogeneity ²³⁵ U	4%	0.2
detection efficiency ε_{H19}	91.7%	1.8
$\langle \sigma_{n,f}^{235U} \rangle$	1.1 b	1.3
$^{16}{ m O}({\sf n},lpha_0)$ events N_{lpha_0}	2670	1.9
N_T^{16O} (atoms/b):	$9.79 10^{-6}$	4.8
remaining proton background	15%	1

Ξ.

$^{13}C(\alpha,n)$ cross section normalization to thick target yield

- normalization between 3.5-5MeV to West & Sherwood's TTY
- below 5MeV: ${}^{13}C(\alpha,n) = {}^{13}C(\alpha,n_0)$

$^{13}C(\alpha,n)$ cross section normalization to thick target yield

Implication for s-process stellar nucleosynthesis

- agreement between 800 and 1000keV: Drotleff, Bair & Haas and Har.
- agreement between 300 and 800kev: Drotleff, Heil, Davids

Sebastian Urlass

Results and comparison

	$^{16}O(n, \alpha_0)$	West and	Pigni	Ciani
	data	Sherwood	and	et al. [5]
	(this work)	TTY [3]	Croft [4]	
main	5%	8%	8%	8%
uncertainty	N_T^{16O}	¹³ C	¹³ C	detection
	(¹⁶ O target)	abundance	abundance	efficiency
Bair and Haas [6]	0.87	0.85	0.8	
Harissopulos [7]	1.30	1.27	1.15	1.37
Sekharan [8]	1.37	1.35		
IRSN [9]	1.02	1.00		
ENDF/B-VIII.0	0.92	0.89		
JEFF-3.3	1.26	1.25		

2

Conclusion: Normalization of ${}^{16}O(n, \alpha_0)$

- ENDF/B-VIII.0 $^{16}O(n, \alpha_0)$ is 8% too high
- JEFF 3.3 ${}^{16}O(n, \alpha_0)$ is 26% lower than our data
- IRSN agrees with our data (below 5.5 MeV)
- normalizations based on: this ¹⁶O(n,α₀) measurement and on ¹³C(α,n) TTY data from West&Sherwood - are consistent
- renormalized data of Bair & Haas and Harissopulos are consistent with low energy data (Drotleff, Heil, Davids, Ciani)

- uncertainties of TTY normalization is about 9%: 8% ¹³C abundance, about 3% stopping range, 2% from TTY meas.
- uncertainty of ${}^{16}O(n, \alpha_0)$ measurement is 6%: 2% from H19, 2% from stat. and 5% from syst. unc. for FGIC
- new measurement to improve time resolution and counting statistics

Thank you for your attention!

4 E b

This work has been supported by the Euratom research and training programme 2014–2018 under grant agreement no. 847594 (ARIEL). S.U. acknowledges support from the Wolfgang Gentner Programme of the German Federal Ministry of Education and Research (grant no. 05E15CHA) and from the ENEN+ project that has received funding from the EURATOM research and training Work Programme 2016 – 2017 – 1 (grant agreement no. 755576).

References

R. Nolte et al. Nucl. Sc. and En.: 156, 197–210 (2007).
 M. Kerveno et al. Phys. Rev. C 87, 024609 (2013).
 D. West and A.C. Sherwood. Ann. Nucl. Energy 9, 551 (1982).
 M.T. Pigni and S. Croft Phys. Rev. C102, 014618 (2020).
 G.F. Ciani et al. Phys. Rev. Lett. 127, 152701 (2021).
 J.K. Bair and F.X. Haas. Phys. Rev. C 7, 1356 (1973).
 S. Harissopulos et al. Phys. Rev. C72, 062801(R) (2005).
 K. Sekharan et al. Phys. Rev., vol. 156, p. 1187 (1967).
 L. Leal. Private communication (2021).

A (1) < A (1) < A (1) </p>

Back Up Slides

æ

ヨト イヨト

Selection of elastic scattering events

 \Rightarrow Elastic scattering detected on C and O (not Kr)

Sebastian Urlass

Alternative normalization by $CO_2(n,n)$

- \bullet measured neutrons (H19) and ENDF/B-VIII.0 CO_2(n,n) with experimental threshold function agree with data
- strong confirmation of normalization with H19

Selection of (n, α_0) events (drift time)

- active volume: drift times between 300ns and 800ns
- Edep<3MeV(En<5.2MeV): full energy deposition & angle integration
- Edep<7MeV(En<9.2MeV): inefficiency negligible

Selection of (n, α_0) events (rise time)

- ¹H(n,p) background separation from (n, α_0) events is needed
- $\bullet\,$ maximum rise times calculated from $\alpha\text{-}$ and proton stopping ranges

Systematic uncertainties of FGIC

quantity	value	unc. (%)
N_T^{16} (atoms/b):	$9.79 \ 10^{-6}$	4.8
cathode-grid drift time (ns)	970	4.1
cathode-grid distance L _{CG} (mm)	39	1.3
CO ₂ concentration	0.05	2
equation of state (ideal gas)		0.3
pressure (bar)	2.0	< 0.1%
temperature (K)	296.67	< 0.1%

IAEA Technical Meeting on (α, n) nuclear data evaluation and data needs