¹³C(α,n)¹⁶O studies at the University of Notre Dame

James deBoer

University of Notre Dame and The Joint Institute for Nuclear Astrophysics IAEA TM on (α,n) nuclear data evaluation and data needs, 8-12 November 2021

JINA-CEE

Motivations

- Nuclear Astrophysics
 - s-process neutron sources
- Essentially all α -beam accelerator studies
 - since carbon is everywhere, the reaction is a background for all other X + α accelerator studies, mainly (α ,n) and (α , γ)
- Large mass detectors for neutrino and dark matter detection
 - Actinides and carbon are hard to completely remove from setups
 - ► Actinide decays \rightarrow up to 9 MeV α -particles \rightarrow (α ,n) on light nuclei in the environment
 - ▶ In particular ¹³C(a,n₁) can mimic inverse beta decay $(p + \bar{\nu}_e \rightarrow n + e^+)$
- Data evaluation of the ¹⁷O system

Level diagram of ¹⁷O system

- Lots of levels!
- ► First excited state is 0⁺
 - De-excites via pair production
- 2nd, 3rd, and 4th excited states decay through γ-ray emission with nearly 100% probability to the ground state

Febbraro et al. (2020)

FIG. 1. Level schematic of ¹⁷O depicting the pertinent details of the ¹³C(α , n)¹⁶O reaction.

"High Energy" Measurement overview

- Around 30% differences in recent ENDF/B overall normalizations of the cross sections
- Above 5 MeV, de-excitation can occur to excited states in ¹⁶O
- Previous counter experiments of the total reaction cross section
- Efficiency changes with energy, don't know the neutron energy
- Bill Peters (2017) & Peter Mohr (2018)
- Mainly this is an issue with the high energy Harissopulos et al. (2005) data

"Low Energy" Measurement Overview

- Low energy cross section is dominated by
 - Broad 3/2+ state and
 - Broad 1/2+ subthreshold state
- Strength of the threshold state is needed
 - α-particle ANC from transfer
 - Direct data provide much constraint
- Background contribution from higher energy states

Utilization of many experimental techniques is critical \rightarrow global R-matrix fit (see LANL EDA)

Some needed data

- Angular distribution data
 - Not much out there
 - Bonner et al. (1956), Walton et al. (1957), Kerr et al. (1968), and Robb et al. (1970)
- At higher energy, very little partial differential cross section information
 - That is, we want ${}^{13}C(\alpha,n_0)$, ${}^{13}C(\alpha,n_1)$, ${}^{13}C(\alpha,n_2)$, ${}^{13}C(\alpha,n_3)$, ${}^{13}C(\alpha,n_4)$
 - Spear et al. (1963), secondary γ -ray study $\rightarrow {}^{13}C(\alpha,n_2), {}^{13}C(\alpha,n_3), {}^{13}C(\alpha,n_4)$
 - ► ${}^{16}O(n, \alpha_0){}^{13}C$ measurements give ground state cross section through detailed balance $\rightarrow {}^{13}C(\alpha, n_0)$

Nuclear Science Laboratory (NSL) at the University of Notre Dame

- isnap.nd.edu
- ► 5 MV single ended accelerator
 - dc alpha beam from 300 keV up to 9 MeV
 - up to 100 uA of beam on target
 - Usually using 10 uA for these studies
- 10 MV FN tandem
 - bunched alpha beam from 4 to 30 MeV
 - bunched beam intensity of a few 10's of nA (unbunched, up to 200 nA)

Improvement in uncertainty analysis

- Development of a Bayesian uncertainty analysis routine for the AZURE2 R-matrix code has been ongoing
- Daniel Odell, a postdoc at OU, is the main developer
- This work is possible thanks to Daniel Phillips and Carl Brune and a grant from

¹³C(α ,n₁) measurements

- Michael Wiescher
- ND 5U accelerator
- DC alpha beam
- 10 ug/cm² ¹³C target (György Gyürky)
- 30 uA on target
- 30 minute runs
- Typically a few hundred counts

First measurement of ${}^{13}C(\alpha,n_1)$ cross section (plus MCMC analysis)

Comparison with evaluations and other data

Dec 2020 setup, ND 5U "solid target" line

B

New measurements (Dec 2020)

- ¹³C(α,nγ) using
 GEANIE HPGe @ 45
 degrees
- First measurements of ¹³C(α,αγ)¹³C
- Could separate 6.92 and 7.12 MeV transitions with HPGe

Fig. 9. Response matrix generated using a broad energy neutron source from a thick target ²⁷Al(d, n) reaction at $E_d = 7.44$ MeV [12].

¹³C(α,n₀) angular distributions from ODeSA measurements

- About 20 keV energy steps
- 20 point angular distributions
- Uncertainties are usually about 5% (unfolding dominated)
- Measurements actually go up to 9 MeV, but our current measured detector response only allows us to go up to 6.5 MeV

$^{18}O(\alpha, n\gamma)^{21}Ne$

- Rebbeca Toomey (Rutgers)
- PhD work
- ODeSA array + HPGe at 125 degrees

¹⁸O(α ,n)²¹Ne: Latest results!

- First n₀ and n₁ partial cross section measurements!
- n₀ and n₁ populate the same levels with very similar branchings at these energies

- Still have a lot of data to analyze.
 - 10 Angles at each energy (sometimes 20)
 - Data extend up to 8 MeV
- Quality of ODeSA measured response matrix is poorer at higher energies.
- Headed to LANL in November to make improved measurements!

One way we can improve (α,n) type reactions

Summary and Foreword

We've measured ${}^{13}C(\alpha,n_0)$, ${}^{13}C(\alpha,n_2\gamma)$, ${}^{13}C(\alpha,n_3\gamma)$, and ${}^{13}C(\alpha,n_4\gamma)$ in the higher energy range (5 to 9 MeV) and ${}^{13}C(\alpha,n_1)$ from 5 to 6 MeV

Future work

- Measure detailed angular distributions of ¹³C(α,n₀) from about 1 to 5 MeV (in two weeks)
- Measure ODeSA response matrix up to 20 MeV at LANSCE (done last week!)
- Expand (α, n_1) measurements from 6 to 9 MeV

Collaborators

UND

- Manuel Couder
- Kachatur Manukyan
- Ed Stech
- Dan Robertson
- Wanpang Tan
- Michael Wiescher
- August Gula
- Rebeka Kelmar
- Shahina Shahina
- + many other ND grad student shifters

ORNL

- Michael Febbraro
- Michael Smith
- Toby King
- Jason Nattress
- Marco Pigni
- OU
 - Carl Brune
 - Zach Meisel
 - Daniel Phillips
 - Kristyn Brandenburg
 - Daniel Odell

- ATOMKI
 - György Gyürky
- HZDR
 - Axel Boeltzig
- LSU
 - Kevin Macon
- Rutgers
 - Rebecca Toomey
- LANL
 - Aaron Couture
 - ► Hye Young Lee
 - Karl Smith
- UTK
 - Kate Jones

IAEA *R*-matrix and light element data workshops

Vivian Dimitriou

Ian Thompson

First measurements made back in 2016

Febbraro et al. (2020)

Unpublished data from 2016 run

Efforts at UND

- Utilizing the ODeSA array of deuterated liquid scintillators from Mike Febbraro at ORNL
 - Intrinsic neutron spectroscopy, 200 keV resolution, 500 keV threshold
 - Make detailed angular distribution measurements across the entire range of interest (1 to 9 MeV)
- Utilizing HAGRiD array from Kate Jones at University of Tennessee at Knoxville and GEANIE HPGe detectors from Aaron Couture at LANL
 - Expand on the secondary γ -ray measurements of Spear et al. (1963) for $n_2\gamma$, $n_3\gamma$, and $n_4\gamma$ partial cross sections
- ³He spectrometer at UND
 - Low efficiency, but excellent intrinsic neutron energy (30 keV) resolution and low threshold (<100 keV)</p>
 - Efficiency becomes very low above 3 MeV

A quick review of past measurements (not comprehensive)

- > 1963 --- Davis measures ${}^{16}O(n,\alpha){}^{13}C$ total reaction cross section from 4 to 8 MeV
- > 1963 --- Spear *et al.* measure ${}^{13}C(\alpha,n\gamma){}^{16}O$ from 5 to 10 MeV using Nal
- 1968 --- Davids measures total reaction cross section from 0.475 to 0.7 MeV
 - Uses a stilbene crystal and psd
 - A thick 200 ug/cm² target was used
- > 1973 --- Bair and Haas use a large 4π carbon sphere neutron moderator to measure the **total reaction** cross section from 1 to 5.5 MeV
 - Target thickness = 2 ug/cm², energy loss is a couple keV
 - Becomes the gold standard for many years
 - > It's the backbone of the ENDF/B ${}^{16}O(n,\alpha)$ evaluation for many years
- 1993 --- Drotleff et al. measure the total reaction cross section from 570 to 2300 keV using a smaller polyethylene moderator
 - Very little experimental information is given
- 2005 --- Harissopulos et al. use a smaller polyethylene moderator to measure the total reaction cross section from 0.8 to 8 MeV
 - Target thickness = 20 ug/cm², energy loss is 10's of keV
 - Throws a wrench in the ENDF/B-VII evaluation, resulting in a substantial change in the overall normalization

