Direct low-energy measurement of the ${}^{13}C(\alpha, n){}^{16}O$ cross section at LUNA

IAEA (α, n) data meeting Andreas Best

INFN Naples University of Naples "Federico II"

 $^{13}C(\alpha, n)^{16}C$

Main s process

- $\lambda_{(n,\gamma)} \ll \lambda_{\beta^-}$: nucleosynthesis follows valley of stability
- Takes place in "¹³C pocket" in thermally pulsing AGB stars
- ${}^{13}C(\alpha, n){}^{16}O$ main neutron sources for s process
- $^{13}\text{C}(\alpha,\,n)^{16}\text{O}\colon$ T \approx 90 MK, energy range 140 230 keV
- Also possible neutron source for i-process (\sim 280 MK, 285 510 keV)
- ${}^{22}Ne(\alpha, n){}^{25}Mg$ small contribution during late stages of main s process

Heil et al. 2008

- Heil et al.: down to 317 keV, large uncertainties below 400 keV
- Drotleff et al.: E_{cm,min} = 279 keV, large uncertainties below 350 keV
- Environmental background
 - Heil 340 counts/hour
 - Drotleff 290 counts/hour
- At higher energies strong differences in normalization
- Trojan horse data anchor to ANC/high-energy c.s.

A. Best (UniNa/INFN-Na)

 $^{13}C(\alpha, n)^{16}O$

LUNA / MV campaigns

- Can cover 50 3500 keV with two accelerators
- Same setup(s) for both campaigns, energy overlap 350 400 keV
- Opportunity to calibrate using more reactions at higher energies
- p/α beam currents order of hundreds of μA

Advantages of going underground

- Direct low-energy measurements limited by natural background
- $\bullet~{\rm LNGS}\approx 3400$ m.w.e. underneath Gran Sasso mountain chain
- Cosmic-ray induced neutrons efficiently shielded against
- Residual flux from (α, n) and fission in rocks
- $\bullet\,$ Neutron flux underground suppressed by ≈ 1000 w.r.t. surface

Setup - Targets

- $\bullet~99\%$ enriched $^{13}\mathrm{C}$ on Ta disks
- Electron gun evaporation, thickness pprox 60 keV
- Stoichiometry and enrichment tested at ATOMKI using $^{12,13}{\rm C}({\rm p},\,\gamma)^{13,14}{\rm N}$ resonances

Setup - Detector

- $\bullet~6~\times~25$ cm, 12 $\times~40$ cm long, 10 bar ^3He counters in polyethyelene
- Efficiency $\approx 30\%~(^{51}V(p,n)^{51}Cr,~AmBe)$
- 2" 5% borated PE shielding
- 1-2 counts/hour total (internal+external) background
- Csedreki et al. NIM A A 994 (2021) 165081

Measurement strategy

- \bullet Solid target (^{13}C on Ta) \rightarrow degradation under beam
- Normally, use resonance yield profile to monitor target
- No ¹³C resonances in LUNA 400 energy range!
- Switch to H⁺ beam, measure ${}^{13}C(p,\gamma)$ gamma ray shape
- Ciani et al., EPJ A 56 (2020), 75

Results

- Covered 235 300 keV, 50 keV lower than before
- pprox 100 C for lowest point
- Problem remains connection to different normalizations
- Ciani et al. PRL 127, 152701 (2021)

R matrix

- Adopted two normalizations: Harissopulos, Drotleff&Heil
- LUNA data kept fixed, others rescaled
- MC R matrix fits for each set for combined reaction rate PDF

Program with new accelerator

- Expected to start operation in 2022
- "High priority" in program
- Remeasure low energy points (> 350 keV) to check systematics
- Map out higher energy region, cross-check with upcoming data

Summary

- Unprecedented ultra-low internal+external background
- Low-energy campaign completed, measured into s process Gamow window
- Connect to high energy region (and cover i process window)
- Treasure trove of new data, both high and low energy
- Need new, global R matrix analysis