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Abstract

Peaking factors [1]:
• Are defined heuristically

• Lose information as they average values along the plasma profile

Spatiotemporal data:

• Encode spatiotemporal information

• No heuristic definition 

• Report every values along the plasma profile

200ms sliding window 
as CNN input
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3. Generative Topografic Mapping of JET ILW- 7D operational space [1] 

5. CNN predictor [3]

*See J. Mailloux et al. 2022 (https://doi.org/10.1088/1741-4326/ac47b4) for the JET contributors

✓ Non-disrupted samples: from safe pulses
✓ Disrupted samples: from the pre-disruptive 

phase of disruptions[1-3]

1. Sample labelling for ML training

• tend : minimum time between the TQ and DMV trigger
• T0 is the first X-point
• Tpre-disr defines the pre-disruptive phase length

An indicator obtained comparing the parameter distributions 
between safe and disrupted pulses has been developed to 
automatically detect Tpre-disr

2. Predictor performances 

4. Tpre-disr automatic  identification [2] 
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*200ms segments of 0D data

In view of the future high power nuclear fusion experiments, the early identification of disruptions is a mandatory requirement, and presently the main goal is moving from the disruption mitigation
to disruption avoidance and control. In this work, the authors describe the evolution of the disruption predictors to overcome the inherent limitations of the data-driven approach. In [1], a Generative
Topographic Mapping maps the high dimensional plasma operational space in a 2D map where different disruption risk can be easily identified. Tracking the discharge evolution on the map, the chain
of events leading a disruption is followed. One of the key challenges to obtain a performing ML predictor is to identify the disrupted phase of the disrupted discharges. To meet this need, a statistical
approach has been proposed in [2], which automatically detects the off-normal behavior of the plasma in a disruption. Another critical phase of ML approaches is the extraction of informative
features from multidimensional diagnostics, such as plasma profiles, which have proved essential for achieving high performance. In [1], profile information have been synthesized into 0D signals. In
[3] instead, a deep learning prediction model, based on deep Convolutional Neural Network (CNN), has been implemented, where plasma profiles are processed as predictor input images.

conclusions

The CNN performance is better than the GTM one,
reaching, on the test set, about 93% of SPs, 4% of
FAs, and alarm times suitable for avoidance
actions. The modularity of the CNN allows the
introduction of additional 2D and 1D signals from,
for example, Fast Visible Cameras or spectrograms
from Mirnov coils.

a) Projection of disruptive discharge # 83557 on the GTM. the operating point becomes darker and darker as the discharge is approaching to

the final phase; b) Class member functions of the non-disrupted classes c) Time evolution of the 7 plasma parameters used to build the GTM


