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Discussion bullets (I)

2

● Thermal quench detection/prediction informing DMS trigger and strategy 
○ TQ modeling is challenging (see “Consequence” session), Ip spike due to TQ difficult to reproduce
○ Unmitigated TQ simulations are scarce → predictive modeling non-existing?

● Effectiveness of predictive algorithms/forecasters, e.g. Staggered SPI scheme 
timescales ~ 100ms

○ Need to be conditioned to actuators response time and behavior. Are there approaches out 
there working in this direction?

○ Safe operating region id and disruption proximity approaches?
○ Time-to-event predictions conditioned on available actuators?

● What limits the True Positive Rate in ML algorithms for disruption prediction?
○ How extrapolable are these solutions implemented on DIII-D/KSTAR/EAST to ITER?

● Disruption rate/conditions affected by RT system, how to decorrelate effects 
when doing analysis at scale? (Or, rather: include the physics of the action of the 
PCS+actuator. E.g.1 gas puffing in rampdown to protect the divertor => plasma 
more prone to edge cooling; e.g.2 core power deposition to avoid impurities 
accumulation triggering large sawteeth and finally NTMs)



Discussion bullets (II)
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● Application of ML to sensor failure: probably effective to complement the processing of 
plasma diagnostics (ECE for AE identification). Which are the conditions for effective 
predictive maintenance (statistical basis, detailed knowledge of the operation 
conditions…)

● From disruption prediction to avoidance. Avoidance needs more warning time and 
effective identification of the disruption cause to trigger the appropriate action 
(emergency shut down last resource in a “reactor”. Where we are on this? (eg see 
Steven Sabbagh, Dan Boyer presentations)

○ TM stability: experiments being run at DIII-D to regulate gradients in Jll  (current well theory) with shaping 
modifications (rt measurements may require faster and better constrained EFITs?). Other approaches 
focus on rt-DCON, AMS, data-driven discovery, …

○ Wait till the mode locks to stabilize via modulated RF (Reimann)?

● ML approaches: better a super accurate black-box model or less reliable but more 
transparent/interpretable model?



42nd IAEA Tech mtg on disruptions and their mitigation: Disruption Event Characterization and Forecasting Results and Initial Real-Time Application: S.A. Sabbagh, et al., (Columbia U.) (7/20/22)

Discussion: Given present successes in disruption prediction and 
avoidance, what are ITER needs for next steps in analysis?

❑ Especially important for ITER Team to provide specific guidance now

❑ Relevance to ITER and next step devices
❑ sufficiency of early warning for (i) mitigation, (ii) avoidance. What timing is needed?
❑ relevance of a disruption regarding analysis for ITER / next devices (e.g. Ip threshold)

• what specific criteria can ITER Team give in this regard?

❑ extrapolation of present analysis, models, etc. to ITER / next devices
❑ sufficiency of ITER diagnostics for real-time analysis
❑ ability to perform analysis in real time

❑ Confidence in analysis
❑ event analysis correlation vs. causality to disruption 🡸 VERY important !!

• what certainty do we have in any analysis that events really cause the disruption?

❑ deterministic vs. probabilistic approaches
❑ physics-based vs. “black-box” AI approaches 



Extra - summary slides
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Physics-driven approach to DP&A on JET (Pucella)
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● Temperature Hollowing and Edge Cooling (anomalous Te profiles) eventually lead to onset of 2/1 Tearing 
Mode (TM) in the termination phase.

○ Destabilization driven by gradient of current density profile: shrinking (EC) vs broadening of J-profile (TH)
■ Possibility of linear destabilization of 2/1 TM due to changes in J

● Interpretative TRANSP sim show changes in J-profile reflecting changes in Te-profile
● Linear stability analysis in p=0 approx shows delta’ to increase a positive value for destabilization to occur

● Core accumulation of high Z imp → TH, while influx of low-Z → EC, leading then to current profile 
deformations, leading in turn to onset of 2/1

● Baseline scenario dataset shows TH/EC indicators (volume averaged Te measurements) to be effective at 
detecting non-disruptive stable values (10% FP) and disruptive behaviour in the last 2s (90% accuracy)

● Characteristics time scales analyzed for baseline scenarios: time from ML to disruption depending on 
mode dynamics and DMV

● TH could be counteracted by increasing central additional heating (if available)

● Mitigation (gas injection) only available action for EC occurring in a hollowed Te profile, since it leads to an 
explosive growth of the TM



Disruption characterization in JET-ILW, paths in high 
performance scenarios with D, T and (D,T) (Alessi)

● Disruption rate and frequency of paths: Temperature Hollowing (TH) vs Edge Cooling 
(EC)

○ TH: High Z impurities accumulating in plasma core
○ EC: mid/high Z imp, causing loss of density ctrl

● Hybrid vs Baseline scenarios show different incidence of dominant disruption cause

● TH and EC events defined via volume averaged quantities describing core vs mid-rad vs 
edge region + temperature peaking + density peaking + Greenwald fraction

● JET RT control system was updated [ L.Piron FED 2022 ] for DT operation in JET with 
advanced algorithms for disruption avoidance and mitigation:

○ A Temperature Hollowness detector [ M.Fontana FED 2021 ] (saving disruptions in ramp-up)
○ RT detector based on a Generative Topographic Mapping trained with input information on density, 

temperature and radiation profiles [ A. Pau NF 2019 ] -> probability of disrupting
○ RT bolometry tomography algorithm estimating the amount of radiation from different plasma regions [ 

D.Ferreira FED 2021 ]
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DECAF expanded to real-time in KSTAR (Sabbagh)
● Modular physics-based approach to event characterization and forecasting

○ Multi-device, integrated approach to disruption prediction and avoidance, Supporting physics analysis, 
experiments run to create, validate models, expand operating space

○ Island rotation dynamics forecaster model real-time available (Riquezes), utilizes DECAF rt MHD system to 
determine mode and critical frq then provides warning (level 3) with hundreds of ms advance time

● Physics-based “event chain” yields key understanding of evolution toward disruptions 
needed for confident extrapolation of forecasting, control

● Very high accuracy >99% (NSTX) and in real-time experiments on KSTAR 100% success 
rate

○ Controlled shutdown, MGI, disruption avoidance actuators triggered in real-time by DECAF warnings
■ Abnormal Ip and z monitored to study disruption timings (current quench spikes) across (spherical) 

tokamaks (Zamkovska)

● Causality vs correlation between warnings and the disruption
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ML pervasively aiding fusion data analysis, experiments, 
and discovery of operational boundaries

● NN estimators for current centroid and growth rate (EAST/KSTAR/DIII-D)
○ Xiao, Barr
○ Real-time estimation of plasma vertical position, fast Z control

● Offline plasma equilibrium reconstruction via NN
● Offline boundary and current profile reconstruction based on Bayesian inference from 

magnetic diag
○ Joint reconstruction of density and current profile with HCN and POINT improves accuracy on current profile

● Sensor failures (DIII-D/NSTX)
○ Jalalvaland, Kolemen
○ Ex: Predicting circuit breaking lifetime on JET - Predictive maintenance to avoid/control sensors faults
○ NN-based AE detector: instead of reconstructing spectrograms and identifying patterns in frequency domain, a 

Reservoir Computing Network (RCN) chews on raw ECE data
■ TPR 91%, FPR 7% in classifying different modes
■ Smooth output label improves detection wrt SME
■ Degradation of model performance shown to depend on location of ECE signal

○ NN-based AE localizer: spectrograms used to extract the probability of AE modes per ECE channel per time step.
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MAST camera data to identify disruptions caused by 
filamentary eruptions
● Eulerian Video Magnification (EVM) video processing technique capable to 

magnify subtle periodic variations

● Spectrograms subjected to EVM to target frequency of interest, e.g. long lived 
modes, tearing modes, …

○ Filamentary disruptions related to ~ 100 ms ballooning activity, could challenge P&A  

➢ Concerns about general applicability to a neutron rich reactor environment in 
which camera data may not be readily available

➢ Could EVM be combined with other tools, like DECAF or spectrogram cleaning 
for AE detectors?
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Ctrl and ML algorithms for disruption avoidance and 
proximity control (Boyer)
● Limited actuation and time-varying constraints impact the effectiveness of 

actual predictive algorithms for disruptions

● Model Predictive Control includes controller limits and continuous 
changes to make up for actuators’ unavailability

○ The core of MPC can be based off TRANSP simulations
○ Opportunities to accelerate nonlinear physics models (NubeamNet) or improve through 

empirical ones (can be based off ML/DL/RL algorithms)

● Constraints could be provided by fast simulations of ML-based predictors
○ Disruptivity vs distance from disruption boundary (SORI)
○ SORI to enable active optimization of controllable parameters to avoid disruptions 
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Prox ctrl (Barr): continuous monitoring and adjustment 
of targets away from stability/control limits

● Vertical Displacement Events (VDEs) +  Additional VDE stability metric assessment on 
KSTAR

● Unintended H-L back-transitions
● Tearing Modes
● ML informed stable operating space

Preset settings for each problem/instability handler: modifiable thresholds for intervention.

● How extrapolable are these solutions implemented on DIII-D/KSTAR/EAST to ITER?
● Is dzmax a metric handled by prox controller? Is it independent?
● H-L back transitions, handled via input power adjustments: is the time needed for 

beams to have effect in plasma taken into account? What if it’s too late to recover? Is 
the metric providing time-to-event predictions?
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ML methods for Disruption Prediction (I)
● CNN / LSTM use plasma eq parameters + magnetics + radiation measurements (Xiao, 

EAST)
○ TPR > 87%, FPR ~ 6–15%, mean alarm time 46–60ms

● Hybrid (CNN+LSTM) approaches: CNN used for feature extraction, LSTM for warning, 
performances increase > 95% [Xiao (EAST), Zhu (EAST/DIII-D/C-Mod)]

○ Cross-device prediction via HDL (Zhu et al) shows general knowledge can be extracted from disruptive 
data while non-disruptive is device-specific.

○ Need to focus on ITER-relevant scenarios (AND disruptions) to improve prediction performance.

● LSTM / RF based algorithms being used in closed-loop experiments [Xiao (EAST), Rea 
(DIII-D,EAST)]

○ TPR 92-95%, FPR ~8-10%
○ RF installed in RT PCS (EAST for high density disruptions, DIII-D agnostic to disruption type)

● XGBoost Looking at impurity driven disruptions, statistical analysis underway (Xiao, 
EAST)
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ML methods for Disruption Prediction (II)
● Transfer Learning to future devices (Zheng): Many efforts focus on “mixing” rather than transferring learnt 

information to new devices/regimes
○ Examples include HL-2A LP+HP, and HDL scenario adaptive study by J.X. Zhu
○ Transfer learning from existing machine to target (e.g., from J-TEXT to EAST) using CORAL (correlation alignment), pre-train & 

fine-tune 
○ More data is needed for domain generalization.
○ With data from more tokamaks, the pre-train model will learn more general knowledge of disruption, easier on transferring to 

target machine.
○ More machine does not necessarily mean more data, as the model needs diagnostics that is present on all machines.

● Centroid method (Vega): ML/Ip increases when the rotation of a mode slows down or locks or the 
amplitude of the mode increases. 

○ ML/Ip installed in JET RT network,  SR > 90%, FA ~4%

● GTM + CNN (Sias/Aymerich) use equilibrium params + profiles (Peaking factors vs full profiles)
○ Pre disruptive phase length determined via statistical tools, SR > 90%, FA ~4%

● CNN + LSTM (Guo): scoping of metal wall DP on EAST using non-metal wall data
○ Convolution attention blocks increase accuracy (AUC ~ 0.84), baseline non-metal wall performances TPR ~95% FPR 8%
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