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Discussion bullets (1)

e Thermal quench detection/prediction informing DMS trigger and strategy
o TQ modeling is challenging (see “Consequence” session), Ip spike due to TQ difficult to reproduce
o Unmitigated TQ simulations are scarce — predictive modeling non-existing?

e Effectiveness of predictive algorithms/forecasters, e.g. Staggered SPI scheme

timescales ~ 100ms
o Need to be conditioned to actuators response time and behavior. Are there approaches out

there working in this direction?
o  Safe operating region id and disruption proximity approaches?
o Time-to-event predictions conditioned on available actuators?

e What limits the True Positive Rate in ML algorithms for disruption prediction?
o How extrapolable are these solutions implemented on DIII-D/KSTAR/EAST to ITER?

e Disruption rate/conditions affected by RT system, how to decorrelate effects
when doing analysis at scale? (Or, rather: include the physics of the action of the
PCS+actuator. E.g.1 gas puffing in rampdown to protect the divertor => plasma
more prone to edge cooling; e.g.2 core power deposition to avoid impurities

accumulation triggering large sawteeth and finally NTMs)
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Discussion bullets (ll)

Application of ML to sensor failure: probably effective to complement the processing of
plasma diagnostics (ECE for AE identification). Which are the conditions for effective
predictive maintenance (statistical basis, detailed knowledge of the operation
conditions...)

From disruption prediction to avoidance. Avoidance needs more warning time and
effective identification of the disruption cause to trigger the appropriate action
(emergency shut down last resource in a “reactor”. Where we are on this? (eg see

Steven Sabbagh, Dan Boyer presentations)

o  TM stability: experiments being run at DIII-D to regulate gradients in J, (current well theory) with shaping
modifications (rt measurements may require faster and better constrained EFITs?). Other approaches
focus on rt-DCON, AMS, data-driven discovery, ...

o  Wait till the mode locks to stabilize via modulated RF (Reimann)?

ML approaches: better a super accurate black-box model or less reliable but more
transparent/interpretable model?



Discussion: Given present successes in disruption prediction and
avoidance, what are ITER needs for next steps in analysis?

0 Especially important for ITER Team to provide specific guidance now

0 Relevance to ITER and next step devices
sufficiency of early warning for (i) mitigation, (ii) avoidance. What timing is needed?
relevance of a disruption regarding analysis for ITER / next devices (e.g. Ip threshold)

* what specific criteria can ITER Team give in this regard?

extrapolation of present analysis, models, etc. to ITER / next devices
sufficiency of ITER diagnostics for real-time analysis

ability to perform analysis in real time

0 Confidence in analysis
event analysis correlation vs. causality to disruption 1 VERY important !

* what certainty do we have in any analysis that events really cause the disruption?

deterministic vs. probabilistic approaches
physics-based vs. “black-box” Al approaches
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Extra - summary slides



Physics-driven approach to DP&A on JET (Pucella)

e Temperature Hollowing and Edge Cooling (anomalous Te profiles) eventually lead to onset of 2/1 Tearing

Mode (TM) in the termination phase.
o Destabilization driven by gradient of current density profile: shrinking (EC) vs broadening of J-profile (TH)
m  Possibility of linear destabilization of 2/1 TM due to changes in |
° Interpretative TRANSP sim show changes in J-profile reflecting changes in Te-profile
e  Linear stability analysis in p=0 approx shows delta’ to increase a positive value for destabilization to occur

e Core accumulation of high Zimp — TH, while influx of low-Z — EC, leading then to current profile
deformations, leading in turn to onset of 2/1

e Baseline scenario dataset shows TH/EC indicators (volume averaged Te measurements) to be effective at
detecting non-disruptive stable values (10% FP) and disruptive behaviour in the last 2s (90% accuracy)

e Characteristics time scales analyzed for baseline scenarios: time from ML to disruption depending on
mode dynamics and DMV

e TH could be counteracted by increasing central additional heating (if available)

e Mitigation (gas injection) only available action for EC occurring in a hollowed Te profile, since it leads to an
explosive growth of the TM

6
I



Disruption characterization in JET-ILW, paths in high
performance scenarios with D, T and (D,T) (Alessi)

e Disruption rate and frequency of paths: Temperature Hollowing (TH) vs Edge Cooling
(EC)
o  TH: High Z impurities accumulating in plasma core
o  EC: mid/high Z imp, causing loss of density ctrl

e Hybrid vs Baseline scenarios show different incidence of dominant disruption cause

e TH and EC events defined via volume averaged quantities describing core vs mid-rad vs
edge region + temperature peaking + density peaking + Greenwald fraction

e JET RT control system was updated [ L.Piron FED 2022 ] for DT operation in JET with

advanced algorithms for disruption avoidance and mitigation:
o ATemperature Hollowness detector [ M.Fontana FED 2021 ] (saving disruptions in ramp-up)
o  RT detector based on a Generative Topographic Mapping trained with input information on density,
temperature and radiation profiles [ A. Pau NF 2019 ] -> probability of disrupting
o  RT bolometry tomography algorithm estimating the amount of radiation from different plasma regions [
D.Ferreira FED 2021 ]
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DECAF expanded to real-time in KSTAR (Sabbagh)

Modular physics-based approach to event characterization and forecasting
o  Multi-device, integrated approach to disruption prediction and avoidance, Supporting physics analysis,
experiments run to create, validate models, expand operating space
o Island rotation dynamics forecaster model real-time available (Riquezes), utilizes DECAF rt MHD system to
determine mode and critical frg then provides warning (level 3) with hundreds of ms advance time

e Physics-based “event chain” yields key understanding of evolution toward disruptions
needed for confident extrapolation of forecasting, control

e Very high accuracy >99% (NSTX) and in real-time experiments on KSTAR 100% success

rate
o  Controlled shutdown, MGI, disruption avoidance actuators triggered in real-time by DECAF warnings
m  Abnormal Ip and z monitored to study disruption timings (current quench spikes) across (spherical)
tokamaks (Zamkovska)

e (Causality vs correlation between warnings and the disruption



ML pervasively aiding fusion data analysis, experiments,
and discovery of operational boundaries

e NN estimators for current centroid and growth rate (EAST/KSTAR/DIII-D)

o  Xiao, Barr
o  Real-time estimation of plasma vertical position, fast Z control

e Offline plasma equilibrium reconstruction via NN
Offline boundary and current profile reconstruction based on Bayesian inference from

magnetic diag
o Joint reconstruction of density and current profile with HCN and POINT improves accuracy on current profile

e Sensor failures (DIII-D/NSTX)
o Jalalvaland, Kolemen
o  Ex: Predicting circuit breaking lifetime on JET - Predictive maintenance to avoid/control sensors faults
o  NN-based AE detector: instead of reconstructing spectrograms and identifying patterns in frequency domain, a
Reservoir Computing Network (RCN) chews on raw ECE data
m TPR91%, FPR 7% in classifying different modes
m  Smooth output label improves detection wrt SME
m  Degradation of model performance shown to depend on location of ECE signal
o  NN-based AE localizer: spectrograms used to extract the probability of AE modes per ECE channel per time step.




MAST camera data to identify disruptions caused by
filamentary eruptions

e FEulerian Video Magnification (EVM) video processing technique capable to
magnify subtle periodic variations

e Spectrograms subjected to EVM to target frequency of interest, e.g. long lived

modes, tearing modes, ...
o  Filamentary disruptions related to ~ 100 ms ballooning activity, could challenge P&A

> (Concerns about general applicability to a neutron rich reactor environment in
which camera data may not be readily available

> Could EVM be combined with other tools, like DECAF or spectrogram cleaning
for AE detectors?
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Ctrl and ML algorithms for disruption avoidance and
prommlty control (Boyer)

Limited actuation and time-varying constraints impact the effectiveness of
actual predictive algorithms for disruptions

e Model Predictive Control includes controller limits and continuous

changes to make up for actuators’ unavailability
o The core of MPC can be based off TRANSP simulations
o Opportunities to accelerate nonlinear physics models (NubeamNet) or improve through
empirical ones (can be based off ML/DL/RL algorithms)

e Constraints could be provided by fast simulations of ML-based predictors
o  Disruptivity vs distance from disruption boundary (SORI)
o SORIto enable active optimization of controllable parameters to avoid disruptions

11



Prox ctrl (Barr): continuous monitoring and adjustment
of targets away from stability/control limits

e Vertical Displacement Events (VDEs) + Additional VDE stability metric assessment on
KSTAR

Unintended H-L back-transitions
Tearing Modes
ML informed stable operating space

Preset settings for each problem/instability handler: modifiable thresholds for intervention.

e How extrapolable are these solutions implemented on DIII-D/KSTAR/EAST to ITER?

e |s dzmax a metric handled by prox controller? Is it independent?

e H-L back transitions, handled via input power adjustments: is the time needed for
beams to have effect in plasma taken into account? What if it's too late to recover? Is
the metric providing time-to-event predictions?
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ML methods for Disruption Prediction (l)

CNN / LSTM use plasma eq parameters + magnetics + radiation measurements (Xiao,

EAST)
o TPR>87%, FPR ~ 6-15%, mean alarm time 46-60ms

Hybrid (CNN+LSTM) approaches: CNN used for feature extraction, LSTM for warning,
performances increase > 95% [Xiao (EAST), Zhu (EAST/DIII-D/C-Mod)]

o  Cross-device prediction via HDL (Zhu et al) shows general knowledge can be extracted from disruptive

data while non-disruptive is device-specific.
o Need to focus on ITER-relevant scenarios (AND disruptions) to improve prediction performance.

LSTM / RF based algorithms being used in closed-loop experiments [Xiao (EAST), Rea

(DII-D,EAST)]
o  TPR92-95%, FPR ~8-10%
o RFinstalled in RT PCS (EAST for high density disruptions, DIII-D agnostic to disruption type)

XGBoost Looking at impurity driven disruptions, statistical analysis underway (Xiao,
EAST)

13



ML methods for Disruption Prediction (ll)

e Transfer Learning to future devices (Zheng): Many efforts focus on “mixing” rather than transferring learnt
information to new devices/regimes

O
(@]

(e]

Examples include HL-2A LP+HP, and HDL scenario adaptive study by J.X. Zhu

Transfer learning from existing machine to target (e.g., from J-TEXT to EAST) using CORAL (correlation alignment), pre-train &
fine-tune

More data is needed for domain generalization.

With data from more tokamaks, the pre-train model will learn more general knowledge of disruption, easier on transferring to
target machine.

More machine does not necessarily mean more data, as the model needs diagnostics that is present on all machines.

e Centroid method (Vega): ML/Ip increases when the rotation of a mode slows down or locks or the
amplitude of the mode increases.

(e]

ML/Ip installed in JET RT network, SR> 90%, FA ~4%

e GTM + CNN (Sias/Aymerich) use equilibrium params + profiles (Peaking factors vs full profiles)

(e]

Pre disruptive phase length determined via statistical tools, SR > 90%, FA ~4%

e (NN + LSTM (Guo): scoping of metal wall DP on EAST using non-metal wall data

(e]

Convolution attention blocks increase accuracy (AUC ~ 0.84), baseline non-metal wall performances TPR ~95% FPR 8%
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