
Disruption prediction and the Mode Lock (ML) or normalised ML signals
• X(t) = ML(t) or X(t) = ML(t)/Ip(t) thresholds are usually used to trigger alarms

• Signal increases when
• The rotation of an MHD mode slows down and can be locked
• The MHD mode amplitude grows

• Signal decreases when
• The MHD mode amplitude drops
• The MHD mode unlocks and the rotation speeds up

• An increasing signal is associated to a disruptive behaviour
• A decreasing signal is associated to a non-disruptive behaviour
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Review of a data-driven adaptive disruption predictor for mitigation
based on a nearest centroid approach

Abstract
Any disruption mitigation system requires a trigger to trigger the corresponding remedial actions. Such trigger is the final step of a chain of events. This chain starts with an alarm that
recognises an incoming disruption followed by interlocks protecting particular systems (for example, plasma heating systems). This contribution is a review of a specific disruption
predictor that is installed in JET. The predictor uses only one signal, the mode lock normalised to the plasma current (NML), and its feature space, in which the separation frontier
between disruptive and non-disruptive behaviour is linear, is two-dimensional. The linear frontier is defined based on two centroids, where each one summarises the disruptive and
non-disruptive behaviours of past discharges, respectively. From a conceptual point of view, the predictor recognises a disruptive behaviour when large differences between
consecutive samples of the NML appear. The predictor is installed in the JET real-time network from June 2019 (in open loop). The real-time predictions analysed so far confirm the
following positive characteristics: fully deterministic (the running time of the algorithm for each prediction is less than 10 µs), not based on a simple threshold but on differences of
amplitudes, easy physics interpretation (not a black-box), success rates above 96%, false alarm rates about 4%, most of the alarms very close to the disruption (26% of alarms within
10 ms) and average warning times of about 100 ms (can be smaller if assertion times are set-up). Off-line analyses with several databases (JET with C-wall, JET with ILW and JT-
60U) have shown full compatibility with an adaptive development from scratch with about 10 re-trainings when tested in thousands of discharges. Re-trainings are performed after
missed alarms. These properties make the predictor a potential candidate to be used as disruption predictor in ITER for mitigation purposes

Two-dimensional parameter space
• The parameter space of consecutive amplitudes (X(t - τ), X(t)) is chosen
• This means to put the focus on the differences of amplitudes (deltas) to recognize 

incoming disruptions
• Nearest centroid approach: disruptive/non-disruptive behaviours are summarised in 

two single points
• Each discharge (disruptive or non-disruptive) contributes with a single centroid 

(disruptive or non-disruptive)

Rationale

Predictions in the two-dimensional parameter space Training/test
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Consequences Interpretation
• The extra 2nd dimension allows for the following 

physics interpretations
• Smooth variations of the signal (deltas ≈ 0) mean 

non-disruptive behaviour
• There is a band around the diagonal in the 

disruptive zone that means non-disruptive 
behaviour

• An increasing X(t) signal does not necessarily 
mean a disruptive behaviour

• Small deltas do not represent disruptive 
behaviours

• A decreasing X(t) signal does not necessarily 
mean a non-disruptive behaviour

• Large deltas represent disruptive behaviours
• A simple threshold in the signal is not optimal to 

recognise disruptive behaviours

False alarms

Missed
alarms

• The interception of 
the separation 
frontier defines a 
critical value above 
which the plasma 
is in a disruptive 
state regardless 
the amplitude of 
the previous 
sample

• Below the critical 
value, the 
disruptive 
behaviour depends 
on the previous 
amplitude

Adaptive prediction from scratch
• Re-trainings are performed after missed alarms
• Off-line analyses with several databases have shown full compatibility with an adaptive development from scratch

• JET case: 10 re-trainings when tested in more than 1200 discharges
• CW: 2738 discharges (175 disruptive, 2563 non-disruptive). Success rate +98%, false alarms -3%, average warning time O(200 ms)
• ILW: 4806 discharges (388 disruptive, 4418 non-disruptive). Success rate +98%, false alarms -3%, average warning time O(300 ms)

• JT-60U: 2 re-trainings when tested with 154 discharges
• 154 discharges (62 disruptive, 92 non-disruptive). Success rate +97%, false alarms 20% (not enough training discharges), average warning times 60 ms

Results in the JET RT network in open loop
• Success rate: 96.2%
• Success rate with positive warning time: 84.6%
• Average warning time: 117 ms
• False alarms: 4%

• Fully deterministic predictor: algorithm execution time for 
each prediction is less than 10 µs

dB,k
(mT/MA)

SR 
(%)

WT>0 
(%)

FA 
(%)

0 99.29 97.51 1.35

0.0021 99.29 97.51 1.32

0.0041 99.29 97.51 1.32

0.0062 99.29 97.51 1.32

0.0083 99.29 97.51 1.29

0.0103 99.29 97.51 1.29

0.0124 99.29 97.51 1.16

0.0145 99.29 97.51 1.16

0.0165 99.29 97.51 1.12
0.0186 98.58 97.15 1.12

0.0207 98.58 97.15 1.02

Type/use Number of 
shots

Range

D/training 113 80181-82504
SEP 2011-MAR 2012

ND/training 1397 80176-82550
SEP 2011-MAR 2012

D/test 281 82569-92410
MAR 2012-NOV 2016

ND/test 3027 82552-92504
MAR 2012-NOV 2016
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Success rate with positive warning time: 98%. False alarms: 4%. Average warning time: O(400 ms)
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Summary
• ITER will require several disruptive event detectors whose combination will be used for avoidance, prevention and mitigation
• Both off-line simulations and real-time results in JET (open loop) show the centroid method as one of the potential candidates among others for mitigation purposes in ITER
• The centroid method shows an extremely simple real-time implementation to recognize disruptive behaviours: X(t) > A*X(t – τ) + B
• Off-line analyses with several databases have shown full compatibility with an adaptive development from scratch in a data-driven approach
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