High-density dilution-cooled plasma formed by the preceding D₂ pellet showed a tendency to toroidally localize the radiation by the following Ne-doped pellet.

- We need low $Z D_2$ injection to avoid runaway electrons, and high Z neon injection to radiate stored energy.
 - Single injection: $Ne+D_2$ mixture pellet (e.g., Ne:D = 10:90)
 - Staggered injection: pure D₂ pellet followed by Ne+D₂ mixture pellet
- However, staggered injection has not been fully tested.
 - Pure D_2 pellet creates a completely different target discharge.
 - ~One order higher density and ~one order lower temperature
 - The effect of following Ne+D₂ mixture pellet can be totally different.
 - Amount of assimilation •
 - Total radiated power and asymmetry of radiated power

Single vs. staggered injection

#30953 (blue traces): single scheme 10% neon pellet only

#31296 (green traces): staggered scheme Pure D₂ pellet followed by 10% neon pellet ~1 ms time delay between two pellets

- Dual SPIs and disruption-compatible diagnostics in KSTAR
 - Multi-barrel SPIs in toroidally opposite locations → staggered injection
 - Toroidal/poloidal bolometer arrays \rightarrow toroidal/poloidal radiation patterns
 - Short wavelength interferometer \rightarrow very high density measurement
- Radiation pattern in staggered injection is very different.
 - During the time when the radiation is strongest, toroidal radiation at a point that is only 33 degrees away differs by ~10 times.
 - When considering the strategy of staggered injection in ITER DMS, the radiation peaking problem must be included with its assimilation rate.
 - On the other hand, poloidal radiation is less localized compared to that of single injection of Ne-doped pellet.
 - Even if it is not the intended staggered injection, staggered injection can occur due to several uncontrollable factors in multi-pellet injection.

