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« Proximity-to-Instability Control (“Proximity Control”)
for robust stability

« Applications in experiment on DIII-D:
— Vertical Displacement Events (VDEs)
- Additional VDE stability mefric assessment on KSTAR

— Unintended H-L back-transitions
— Tearing Modes
— ML informed stable operating space

 Future Work & Conclusions
Dili-D
2



Comprehensive disruption prevention must cover the full

range of control regimes
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1. Continuous Prevention 2. Asynchronous Avoidance 3. Emergency Response
— Stable scenarios

— Regulate stability
vs performance

— Should prevent majority of disruptions,
but possibly the least developed!
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1. Continuous Prevention
— Stable scenarios

— Regulate stability e Al
vs performance T PrOXIm"y
— Should prevent majority of disruptions, Confiroller

but possibly the least developed!
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Proximity Control for robust stability

* Proximity control: confinuous monitoring and adjustment of
targets away from stability/control limits
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Proximity Control for robust stability

* Proximity control: confinuous monitoring and adjustment of
targets away from stability/control limits
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Proximity-to-instability conirol architecture maps real-time

stability metrics to modified scenario targets

Real-time Stability Proximity Controller: Independent
Estimators: Problem Control Control Algs:
Handlers  Targets « Integrates available real-time
] Plasma stability tools
VDEy est. = TMs L, £, Gos = *  Maps metrics to problem-
: e specific handlers
ML predictors Hel . 1
: ; * Modifications control targets
* 5 NB| in real-time
s teo\'“mes S e
\C .
obl (0° o8  Prop S top, .
é\cs'p\ ocV® Targ, Sms 4, 9P Real-time target
o Sfs frl  changes sent to
actuator controllers
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Proximity-to-instability conirol architecture maps real-time

stability metrics to modified scenario targets
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Problem-focused
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update in real-time
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Robust VDE prevention with Proximity Control

» Implemented, tuned, tested Proximity Controller:

for robust VDE prevention Real-time Stability Independent
Estimators: Problem Control Control Algs:
Handlers Targets
* Real-time VDE-y estimator: Plasma
. .. . =»| VDEs =¥ K, gapin -»
« Linear, rigid motion [1-2] J' g9p Shape Ctrl
* RT implementation of VDEyest. =
offline TokSys analysis .

« Actuators: : :
« Elongation ‘
* Inner-gap between

LCFS and HFS wall

D”’-q [1] E. Olofsson 2022 PPCF
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Updated Proximity controller with new full RT y calc successfully

prevented VDEs, regulating only near y-limit

« VDE reliably prevented unhl Proximity Controller intentionally disabled

1 93D184251 (efitrtl) @ t=2.8318s
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Robust protection with VDE-y up to 850 rad/s

No Control
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KSTAR has achieved elongation (k) as high as 2.2+ in

recent campaigns

Significant VS control
dev. [1-2] has led to
robust ops at K=2.2

Decoupled fast-Z

control w/internal Cu coils o

[1] D. Mueller et al. FED 2019
[2] S.-H. Hahn et al. FED 2020

K=2.2 held for >3s

— y=250-300 s verified
with triggered VDEs

-KSTAR
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Time [s]
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dZ. .. provides a fundamental VDE stability metric

Variety of potential stability metrics exist

for VDEs (K, yype. Mg, dZ-max...) Example of Analysis and Gedanken
Experiment to Calculate AZ ..

o d Z ot the max AZ beyond which 0.4 Vertlcal Dlsplacement Sweep w/PS
the VS control cannot recover Uncontrollable | lc\g?ll{%é?l%lll) !
displacements~J »
f displacement
03[ fraject |
dZmax / dZ,ax rajectory
. « and / Z)ois, USE€M to cOMpare AZmax = 0.04

cross-machine VS control capability £ o0 ~Gi=12,7,= 107 radls .

- gpntlrollable
 Measured via “release-and-catch”: short \, isplacement

ed 1 via as d-catch’s " /\ \ trajectories
windows disabling VS control ( growth) /0/;),/\ \

— Compared on multiple devices [1] Maxifea® 02 04 06 08 10
— More recent assessment in §-C devices controllable Time (s)
displacement

KﬁTAR [1] Humphreys, D.A., et al., Nucl. Fusion 2009
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dZmax diagnosed in high-K KSTAR discharges under

varied ELMing conditions

dZmax on KSTAR measured for high K=2.2 cases: ~0.5cm
“Release-and-catch” method: coil currents frozen for short periods of time to drift
- K=2.2 Bo=1.75 [(1)=0.8 yype~300 s at 2 ELM frequencies

dzmax/ a-~

dZyax/a ~ 5% @ K=1.75

><1021

1% @ K=2.2

Previous studies [1] diagnosed dZmax
of 2.5cm atK=1.75 yypg~1105s’!
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Unintended H-L back-transitions lead to T
large control transients '822 ‘2‘
£ 7,
Proximity Control applied for RT prevention “E’ = 2
— Control response used: adjustment of NBI 3'
control’'s minimum input power in real-time Z !

2 warning systems / monitors implemented:/

— ML model [1]: predicts H/L mode in next 1ms,
based on 20ms history in major EFIT param, Py,

— Power bal. metric: enforces minimum P,,-P, 4

Both successfully demonstrated:

— Test case: user-programmed drop in B target
- Pug reduction - H-L

Dili-D
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[1] D. Orozco et al IEEE Transactions, submitted, in review

Unintended H-L Back Transition Prevention Techniques
Demonstrated with DIlI-D Proximit ontrollr

ML H-metric

PrEl [MW]
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Unintended H-L Back Transition Prevention Techniques

Demonsirated with DIlI-D Proximity Controller

Unintended H-L back-transitions lead to
large control transients

Proximity Control applied for RT prevention

— Control response used: adjustment of NBI
control’'s minimum input power in real-time

2 warning systems / monitors implemented:

— ML model [1]: predicts H/L mode in next 1ms, g
based on 20ms history in major EFIT param, P, m;

— Power bal. metric: enforces minimum P -P, .4 N
g0

Both successfully demonstrated: 15

— Test case: user-programmed drop in B target C
- Pug reduction - H-L ~os
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Tearing Mode stability a critical need for robust disruption

orevention

« Jil gradient “well” identified as indicator 150}
of disruptive TM stability in the IBS [1]

— Steeper gradients near g=2 surface 100{
permits TM generation in the IBS

— Plasma shape a potential actuator 50|
—  MSE EFIT analysis from Turco [1] e A

7 ] - (e)
[1] F. Turco et al 2018 Nucl. Fusion 58 106043 ] 025 05 0.75 1

o Stable
o Unstable

* Fast, real-time calculation of J;, profile via “Sobol”
method, RT-EFITs with MSE 151 o

— EFIT settings to resolve J-well based on [1]

£ 2t
» Potential for Proximity Control provided sufficient > 25! L, ©
controllability of J; modification o
sf@ T
DiIll-D o 2 4 6 8

NATIONAL FUSION FACILITY
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Regulating gradients in J;, with shaping modifications

being evaluated for reinforcing TM stability in DIII-D

- Jy-well depth found to respond to 8. own Contro] On fred)

(tri.), and Qo crown (sAr.-ness) . | ] ws) |, [Tl8e04 :
— Shape mods of +A8 own & —As crown _ —ControlOff] | = S
were found to reduce gradients 5Q0-5 —Control On ] =
ol?___ 0 P
- Proximity control: limited J, controllability _, E{[H ] “ %10
with RT shape mods in high-torque IBS ¢ mTTT 3
—  Future experiments: test application < 03 | N
for TM prevention in low-torque 0.2 ®) ; I >
o : >§ k
- Variety of additional tools recently §§0
connected to the Proximity Control =N
algorithm (RT-DCON'-2, AMS3) 2%
— Awaiting experiments & further dev. 5
Time [s] Tima [<l

D=0 [1] R. Conlin et al 2020 APS DPP  [3] J M Hanson et al 2012 NF
18 MATonAL TSN ERSERY [2] A. Glasser et al 2020 PoP J. Barr/IAEA Tech. Mig. on Disr. & Mit./July 19"-22", 2022 * Crown: side opposi’re X-pT in SN



Regulating gradients in J;, with shaping modifications

being evaluated for reinforcing TM stability in DIII-D

- Jy-well depth found to respond to 8. own Contro] On fred)

(tri.), and Qo crown (sQr.-ness) . |
— Shape mods of +A8 own & —ALs crown _ —Control OFf| | |
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Je | _ %\E 1
- Proximity control: limited J, controllability | |= | 186949
with RT shape mods in high-torque IBS ¢ |]| lul]l “ 0.5 3.66520ms
—  Future experiments: test application < 03 | 0
for TM prevention in low-forque 0.2 ®) ; :
? 1 3.
« Variety of additional tools recently §5
connected to the Proximity Control 24
algorithm (RT-DCON'-2, AMS3) 27

— Awaiting experiments & further dev.
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Interpretable ML recently integrated into proximity coniroller

for experiments in 2022-2023

1.00
— disruptivity
v 0.75t elongation
o _5 —_— (_jensity
55 os0/l— !
© "
€€ 0.25
)
0.00
time Fig. Courtesy C. Rea
« Control paradigm with - DPRF: Disruption Prevention via
interpretable ML: Random Forests [1]
— Monitoring prox. to edge [1] C. Rea Nucl. Fusion 2019

of stable operating space

* Many contribution factors (f.)
map (mostly) to control targets
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Conclusions: DIII-D & KSTAR are developing, testing, and qualifying

control tools for comprehensive disruption avoidance

Proximity-to-Instability control architecture implemented for real-time scenario
modification to maintain robust stability on DIlI-D

A variety of problem-specific handlers already under testing, more on the way

VDEs: robust prevention with regulation of VDE-y near device limits

Unintended H-L back-transitions: minimum heating based on ML and power-balance
TMs: multiple methods under current, active development (Jil, rt-DCON, AMS...)
General maintenance of safe operating spaces: ML with the DPRF

Evaluating, qualifying stability metrics and proposed control response suitability
for real-time proximity control application as we go

NATIONAL FUSION

Including cross-device stability metrics
Extension to KSTAR on the way
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