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Secondary REs are the dominant contribution to large
PFC surface heating in rapid loss event of DIlI-D

« Rapid RE final loss event in DIlI-D induces large electric fields in open flux
regions that increases generation of secondary REs

- Secondary REs rapidly deconfine when generated in open flux region by initial REs
with large drift orbit effects
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Looking at DIII-D shot 177031 with D2 injection into post-
disruption RE beam [1]

» Disruption triggered by primary injection of ¥, contours with E, colormap

cryogenic Ar pellet t=1.5947s _ t=1.60228

15}

* No impurity purge and recovery of electron density
after secondary D2 injection

« Central solenoid stops driving RE beam to trigger
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[1]Unmitigated termination in Paz-Soldan et al., Nucl. Fusion (2021)




Infrared (IR) imaging shows final loss event localized at
leading edge of graphite PFCs

t =1.61348
* IR imaging [1] shows
localized RE heating at IR PEC T evolution
\ | graphite tile interface T e
‘ - — Asingle tile at one toroidal [
‘_ location appears to 050 |
ablate while others
withstand heating S 200}

- Calculation of T at PFC 1s0] procdo
from IR affected by
plasma, obscuring value |

E - IR detector as configured B
saturates during final loss ' A -
event

— DII-D graphite tiles ablate
around 2500 C° [2]
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Rapid RE final loss event increases inductive electric fields
and secondary eleciron generation via avalanche source

« Approximate RE threshold electric field with impurities 300 ———————————————————10
tot
Ecrir = ESf = 22 = 3.14V/m [1] E
ne et ol =
amedmic® ot = , 16 §
- T, = etinn , N = ZS(ZS’O — Zs)ns , < 150 b | j
ne = 2.25x1020m‘3,nD+1 = Np+1 = Ny 40 =N, /2 100} =
12
50
— Relativistic InA evaluated at peie = mec 3 Vsvp/ |E/ES [2] |

1.598 1.6 1.602 1.604 1.606
t(s)

« Approximate RE growth rate due to avalanche REs

2 1100
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— RE population exponentiates in ~7.7ms B 1555 lo
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1-50

« Secondary REs rapidly deconfined when generated in
open flux region from initial REs with large drift orbit
effects

1-100
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[1] Hesslow et al., Plasma Phys. Control. Fusion (2018) [2] Hesslow et al., Nucl. Fusion (2019)

Irp (Hz)



Avalanche RE distribution results in large surface heating

ICO =9.7 x 106 eV, Mo =9.7°

150
« Avalanche distribution is large at low energy, proportional
1
fo m [1] T 100¢

™

- Secondaries generated below threshold can contribute to

507

@ Avalanche source
—— Allowable secondary region
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--=- Critical energy
Approximate RE threshold
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- Approximate threshold from Ref. [2] with critical p..i; from Ref. [3] | |
4 5 6 7
« Low energy REs deposit their energy shallowly into PFC 10 e 10
- Continuously slowing down approximation (CSDA) from ESTAR 0085 e enmam LUk
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« 1D analytical surface temperature change of PFCs [4] E 0.025 ]
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[3] Hesslow et al., Nucl. Fusion (2019) [4] Martin-Solis et al., Nucl. Fusion (2014)
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KORC modeling of RE final loss event uses evolving fields
and constant/uniform density profiles

° KQRCt.eVOWeS RE gUng'} I'Femer (?C)tprbifs‘l — Sample avalanche distribution with minimum
using fime-sequence reconstructions [1] dependent on scaled-down local peyitiecal TO find

RE beam with uniform, mono-energy/pitch convergent results

10MeV/10° initial distribution
- Axisymmetric fields don't capture small MHD « Analytic model of faceted inner wall
f developed in KORC as regular polygon

activity [2] during final loss even
— 15cm width graphite files yield difference

between radius of leading edge and tile
center of < 3mm

 Partially-ionized impurities included in

collision operators
Assume constant and uniform plasma and Ar
profiles, including neutrals

) Hold down assembly .. A

n, = 2.25x102°m=3 from DIII-D interferometer, \ Graphite gasket
T, = 1.5eV, n,.+1 = ny+0 = np+1 = 1.125%x10%°m™3 "
Increases collisionality and electrons available
for secondary generation

e Set minimum momentum for numerical
tractability of resolving collision processes N e

“Thermalize” particles dropping below scaled- C"—‘”“'f”“-’l‘[’
vessel wa

down glObC” pcrit,global
Schematic of faceted graphite tiles [3]
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Secondary REs generated in open flux regions during
final loss event are rapidly deconfined

* Flux surfaces closed at beginning -« Initial REs travel through open flux
of final loss event regions due to drift orbit effects at

_ Most secondary REs thermalize rapidly  high energies
- Secondary REs at lower energy

1 with no drift orbit effects are rapidly
P e _ deconfined
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Secondary REs generated each 0.5ms
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Estimate angle of incidence to PFC from guiding center
angle of incidence

o AT, s is sum of contributions from each
deconfined RE

GC angle of incidence 0,

l

v t = t—t' [ (t—t1)
ATsyre (X, t) = ZiKL(Sifo qi(X, t )eXp <K(5—2)) erfc (%

q; is power flux of REs scaled to match inifial simulation

and experimental current
6; = Sgstar(KE;) sin

from
, and

randomly-chosen gyrophase y

sin ©; = —cos Ogc; sin7; siny; + sinfgc; cos

Linear interpolation of 100001
trajectory with walll yields 8¢ 8000 |
Also require that sin ©; > 0, putting 5000 |
constraint on possible y; Zr@

Split every RE into 10 with different 4000

randomly-chosen gyrophases
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Secondary RE heating is on leading edge and required
for qualitative agreement with experimental observations

« Uniform toroidal spacing of tiles enables projecting all orbits onto a single tile
— Still many ftiles in vertical direction

« PFC surface heating due to is order of magnitude and hailf larger than
that due to
. have n; < 90°, can have n; > 90°
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Secondary RE heating is on leading edge and required

for qualitative agreement with experimental observations
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Average surface heating (in toroidal extent) from KORC
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Discussion

 Large electric fields
induced on trailing side of
advecting RE beam

- Induced electric field in
region of open flux surfaces

* Large-angle collisions will
generate low-energy
secondaries that lead to
large wall heating, even if
they don’t runaway
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Future Work

Wall heating of final loss events with 3D
MHD (ITPA collaboration MDC-DSOL-1)

Explore how thermalized secondary REs
contribute to wall heating

Explore how wall irregularities change
local heating

Couple with 1D diffusion model to
include experimentally-inferred plasma
and impurity profiles

Use KORC results in more advanced
volumetric energy deposition and
heaf fransfer/fluid motion codes

Explore sensitivity to charging of wall
by deconfined REs and partially-ionized
impurities

Self-consistent kinetic-MHD modeling to

simulafe RE beam scrape off and
deconfinement due fo 3D MHD modes

N
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Medium
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Long




Secondary REs are the dominant contribution to large
PFC surface heating in rapid loss event of DIlI-D

« Rapid RE final loss event in DIlI-D induces large electric fields in open flux
regions that increases generation of secondary REs

- Secondary REs rapidly deconfine when generated in open flux region by initial REs
with large drift orbit effects

t=1.6234s
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Orbit effects are necessary for accurate modeling of REs

 Poloidal plane RE (passing) orbit
approximately

o o0

e By = 60
(R — A)? 4 72 = R? Dy | - 56
A= Ro+qovs/Qe 0.2 s -t B
R? = 0% — R§ + 2qov4 /e 3 2
- Q. =eB/ym,,y = 1/\/1— (v/c)? | |
— Assumes axisymmetric, circular oal NN | Seroaal
cross-section with constant g, | \ Phys.
sign depends on Bgdirection 0.6 , Plasmas

(2017)

— Canonical toroidal angular
momenfum conserved without
acceleration mechanisms

» Capture effects of frapped
and passing particles

— 40 MeV REs shown with varying pitch angle 6

%QAK RIDGE

ional Laboratory




KORC evolves RE orbits with synchrotron radiation to
accurately calculate RE transport

 Relativistic Lorentz force for FO orbits

@ - v, @ _ —e(E + vXB)
dt dt

« Reldativistic GC system of equations

ax 1 mubxVB+p,B* d B* VB
dt b'B* mygc dt b'B* YQC

- B* =qB + pVxb, p; = ymVcosn with pitch angle n,
u=pi/2mB, vy =1+ (py/mc)? + 2uB/mc?
- Tao et al., Phys. Plasmas (2007)

e RE synchrotron radiation

1 1
Fp = - [(pxb)xb —

(mec)?

(pxb)?p|
- Tp = 6meg(mec)*/(e*B?)

— Landau-Lifshitz form of Lorentz-Abraham-Dirac radiation
reaction force
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KORC includes Coulomb collisions with bound elecirons

» Particle-based (Langevin) linearized Fokker-Planck Coulomb collision Te:l 5 eV
operator ne:le+19 m™

dp = {~Cr (@) + 2 3 P2 Ca(P)] }dt +\2C,(p)dW,
dn = ";(p) cotndt + “ch(p AW,

- General fransport coefficients [Papp et al., Nucl. Fusion (2011)] and
bound electron physics [Hesslow et al., Phys. Rev. Lett. (2017)]

Co () = —F“QTEIE)Q b3, A (14 ) - 2]}, a(0) = Lol

R A W e

o Toeei = Nee*INAgeei/4med G is the Chandrasekhar function,n; is the density

Te:1.5eV

. . . . . . - ne:le+19 m*
of the j-th ionization state, Z; and Z,; are the fully and partially ionized impurity Zeff 1

ion charge, g; is screening function, h; is a function describing energy absorption

* RE bremsstrahlung radiation
d 1
- [(y — Dm,c?] = —2njKkZy;j (Zoj + 1) %(y - 1) [ln(Zy) — 5]
- Kk =2mr2m.c?, 1, = e?/dmeym,c?, and a = 1/137

— Bakhtiari et al., Phys. Rev. Lett. (2005)
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Aleynikov et al., IAEA FEC (2014) and Boozer, PoP (2015)
developed a more accurate large-angle collision operator

Slfo(ro,$0), f1(¥1, §1)] = 2,,meczp ™ — 1] dpodfod‘PO—T (M1 - Ao — &) fo(Po, §0)

— Subscript O for initial and 1 for secondary RE

do _Zm% (yo—l)zy(z, _ Zy(2,+2y0—1 +1] £ = 0+1
dyr  v3-1|1-D20o-v1)? @1-D@o-v1) Y )’1+1

1

n\/(l -§3)(1-¢8)—- (& - 5051)

- [deos(fiy -1 — &) = is form from Aleynikov et al., IAEA FEC (2014)

 McDevitt et al., PPCF (2019) adapts this for Monte Carlo by choosing single particle
distribution function for each initial RE with index i

= 2 9@Po—Pi)o(0—¢i
~ fo(po, &0) = 83 (F — %)) 72 Z;pgo :
0

« Secondary REs born at location of initial REs
2

efe 1 i vi-D*v} 2y7+2y;
- S[fi()/ir gi)’ fl()/1r €1)] - - T3 P 14 14 _ )/ +aYi—

1
2e2m3c2 pry1 vir? -0 [(r1i-D2(ri-v1)? (ri-Di- Y1)+ ] \/(1 -§2)(1-¢7)-(&,- 551)
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Benchmark implementation of large angle collision
operator

104 Active RE fit y7, = 0.07

E/Ecy = 5.00

— All RE ——Active RE
= =All RE fit = =Active RE fit

- Spatially-independent calculations, using electric field acceleration, collisional friction, pitch
angle scattering, synchrotron radiation, and large angle collision source

— Left plot shows evolution of all (blue trace) and a subpopulation of active (red trace) REs included in a calculation
- Growth rates in center plot compare favorably with Liu et al., PPCF (2017) and McDevitt et al., PPCF (2019)

- Toroidal and trapped particle effects on the avalanche growth rate are consistent with simulations
in McDevitt and Tang, EPL (2019)

— Physical effects discussed in Nilsson et al., JPP (2015) and Nilsson et al., Nucl. Fusion (2015).
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Approximate impurity content determined in simulations
without large angle collision operator

—

 Begin KORC calculations near time when
solenoid stops driving RE beam

o
o

o
o))

—DH
—Ar™' /Dt =0.25

* n, is set from interferometer measurements
Art'/Dt! =05

— Ratio of Art! and D*! is unconstrained by A
experimental diagnostics — .DIILD 177031

Normalized Current
=
~

o
N

0
1.58 1585 159 1595 16 1.605
 Set neutral Ar*°

o same value
as Art!

— Result from
Beidler et al.,
IAEA FEC (2021)
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Energy and pitch distribution of secondary REs reaches a
quasi-steady state during final loss event

Primary REs Secondary REs

—e—1=1.5952
—e—1=1.5962
—e—1=1.5972
—e—1=1.5982
—e—1=1.5992
—e—1=1.6002
t=1.6012
t=1.6022
t=1.6032
t=1.6042
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Angle of incidence calculated from GC angle of
incidence, pitch, and randomly-chosen gyrophase

* sin®; = —cosbgc;siny;siny; +sinbgc;cosn; >0
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