



# Disruption Loads in SPARC

V. Riccardo and the SPARC Team

Second Technical Meeting on Plasma Disruptions and their Mitigation



#### Contents

- Introduction to SPARC disruptions
- Thermal loads
- Electromagnetic loads
  - Current quench
  - Vertical displacement events
  - Asymmetric events
  - Load summary

### SPARC – Key disruption parameters



| Major Radius                   | 1.85 m |  |
|--------------------------------|--------|--|
| Minor Radius                   | 0.57 m |  |
| Toroidal field at Major Radius | 12.2 T |  |
| Plasma Current                 | 8.7 MA |  |
| Nominal q <sub>95</sub>        | 3.4    |  |
| Plasma Thermal Energy          | 27 MJ  |  |
| Magnetic Energy inside Vessel  | 70 MJ  |  |



©SPARC

### Design number of disruptions





4000

total

6000

mitigated

pulse numer

8000

10000

12000

Design number of disruptions: 1800 mitigated and 300 unmitigated, all at full current. SPARC life consumption will be counted to actual plasma current and disruption outcome.

500

0

2000

07/19/2022

0.9

0.8

0.7

0.6

0.5 0.4

0.3 0.2

0.1 0

0

4000

2000

disruptivity

6000

pulse number

true positive

8000

10000

false positive

12000

14000

probability



P. C. de Vries, et al., Fusion Science

14000



### **Disruption mitigation**

#### Thermal loads: massive gas injections



Able to handle variable mixtures of hydrogen isotopes (not T) and noble gases

#### **Runaway electrons: Runaway mitigation coil**



REMC

07/19/2022

©SPARC

## SPARC

#### Thermal loads



- Divertor optimized for normal operation
- Main chamber shadowing includes off normal configurations
- Plasma facing components are not actively cooled, removing the risk of coolant leaks
- Expected to degrade gently due to disruption loads and mostly away from the power handling regions of the divertor

#### **Challenges:**

- X-point thermal quench...
  - limit stored energy until disruption mitigation is established
- Halo convective power...
  - expected to be away from strike point regions
- Runaway electrons...

expected to be away from strike point regions



### Electromagnetic loads



### Minimum current quench duration





N.W. Eidietis et al 2015 Nucl. Fusion 55 063030

From the ITPA Disruption Database (IDDB), the minimum current quench duration is clearly set, and has a robust probability distribution. The maximum duration of the current quench might be less well documented.

The minimum current quench duration for in-vessel design in SPARC is 3.2 ms, corresponding to 1.78 ms/m<sup>2</sup>.



#### Maximum current quench duration







The IDDB does not contain ITER-like Wall (ILW) disruptions from JET. ILW disruptions extend to ~100ms (25ms/m<sup>2</sup>), but VDEs remain under 50ms for the 80-20% duration, or normalized full current quench duration of 21ms/m<sup>2</sup>.

The maximum current quench duration used for vessel design in SPARC is 40 ms.



#### Halo current fraction and toroidal peaking factor



N.W. Eidietis *et al* 2015 *Nucl. Fusion* **55** 063030

### Halo current density at wall

The halo current width is expected to be 8 cm to 20 cm. 8 cm = highest current density; 20 cm = more areas wetted

SPARC still lacks free boundary transient analysis.

#### Hypothetical disruption:

#### Step 1:

- Vertical displacement to q<sub>cyl</sub>=2
- Halo current up to f\*TPF=0.35

#### Step 2:

- Vertical displacement to q<sub>cvl</sub>=1 at full plasma current
- Halo current up to f\*TPF=0.7

#### Step 3:

- Keep current density in core+halo as at q<sub>cvl</sub>=1
- Shrink to enter the divertor

Step 3 might not be representative as the interaction with the divertor current... residual X-point?









#### Vessel vertical loads – rough envelope

$$F_{v}^{\max} = \frac{F_{p,c}^{\max}}{1 - {\tau'}_{cq}^{-1}} \left[ \exp\left(\frac{1}{\tau'_{cq} - 1} \ln \frac{1 + \tau'_{VDE}}{\tau'_{cq} + \tau'_{VDE}}\right) - \frac{1 + \tau'_{VDE}/\tau'_{cq}}{1 + \tau'_{VDE}} \exp\left(\frac{\tau'_{cq}}{\tau'_{cq} - 1} \ln \frac{1 + \tau'_{VDE}}{\tau'_{cq} + \tau'_{VDE}}\right) \right]$$

S Miyamoto 2011 Plasma Phys. Control. Fusion 53 082001

where  $\tau'_{\text{VDE}}$  = $\tau_{\text{VDE}}/\tau_{\text{L/R}}$  and  $\tau'_{\text{CQ}}$  = $\tau_{\text{CQ}}/\tau_{\text{L/R}}$ , which can be further simplified as

$$F_{v}^{max} = F_{p,c}^{max} \left( \frac{1 + \tau'_{VDE}}{\tau'_{CQ} + \tau'_{VDE}} \right)^{\frac{1}{\tau'_{CQ} - 1}}$$

For 40 ms CQ, ~100 ms VDE, L/R time ~100ms:  $F_v^{max}$  <60% of  $F_{p,c}^{max}$ 

 $F_{v}^{max}$  is the total force on the vessel, including eddy, halo, local loads, etc as seen past the screening of the wall.

#### This is important when combining different sources of loads on the vessel to avoid double counting.



### Vessel vertical loads – critical inputs

SPARC lacks validated free boundary transient analysis... specifying the worst-case for engineering loads.

Cylindrical q at the start of the current quench:

- Alcator C-Mode reference

VDE duration:

- Reverse engineering of simulations
  - Vertical position set as exponential... free parameter, determined to have ~force free~ plasma
  - Radial position and minor radius as a function of the vertical position to fit in the plasma facing contour
  - Set plasma to keep the largest cross section during displacement, so reaching the critical cylindrical q the furthest from the midplane





### Minimum $q_{cyl}$ at current quench (1/2)



SPA

07/19/2022

©SPARC



### Minimum $q_{cyl}$ at current quench (2/2)



compared with typical SPARC simulation





The vertical force seen by the vessel supports is

$$\frac{1}{\mu_0} \oint_{oute wall} \left( (\boldsymbol{B} \cdot \boldsymbol{n}) B_z - \frac{B^2}{2} n_z \right) dS$$

The plasma is force free, the "force" on the plasma is

$$\frac{1}{\mu_0} \oint_{inne \ wall} \left( (\boldsymbol{B} \cdot \boldsymbol{n}) B_z - \frac{B^2}{2} n_z \right) dS - F_{in-vessel \ conductors}$$

07/19/2022

©SPARC

### Vertical growth rate (1/2)





The SPARC vertical growth rate is between 50 and 62.5 s<sup>-1</sup>... this is where the "plasma" force remains close to zero during the displacement.

The VV net vertical forces increases as the VDE gets longer, BUT slow events are inconsistent with a force free plasma.

Best fit growth rate  $\sim$ 53 s<sup>-1</sup>.



### Longer current quench = larger net vertical load



The SPARC longest current quench is <40 ms.

The VV net vertical forces increases as the current quench gets longer.

#### Vessel vertical load – design point



The design point for the vessel net force, 26MN, is equivalent to a ~200 ms vertical displacement, about double the duration of a force-free plasma displacement (102 ms).



### Asymmetric loads – matching JET 38070 (1/2)



JET model: saddle loop positions to set the vessel profile, vessel toroidal resistance to set the vessel equivalent thickness

Kink (m=1/n=1) to match saddle loop data  $\rightarrow$ 



Vertical displacement at kink ~ 2/3 minor radius Plasma major radius at kink ~ unchanged Kink amplitude 40-45% minor radius Kink current 40% initial plasma current

SPARC



### Asymmetric loads – matching JET 38070 (2/2)

The best match is ~2MN, <u>but</u> the sideways force of 38070 is quoted in literature as 3.5MN. The peak reaches briefly 3.5MN, the smooth version is <3MN.

The impulse on the VV matches sideways displacement within a broad margin: it could be 25% off either way.





### 38070 is a worst-case asymmetric load for JET





#### Longer event OR higher resistance = larger sideways force



#### Deliberately no axis labels

### Sideways force on SPARC



The model has no plasma.

The plasma is represented by variable current filaments (axisymmetric or kinked)



Force produced by any current inside the surface **This is the net force on the VV** 

Force produced by any current inside the surface

Force on in-vessel conductors

The difference between the outer shell and the inner shell gives the force from the eddy current in the VV





#### Sideways force due to plasma asymmetries



#### Without REMC: 12 MN With low resistance REMC: 16 MN



#### Sideways force due to REMC alone



Even without plasma asymmetries, REMC gives a net sideways force, which depends on its resistance, up to 9 MN.



07/19/2022

©SPARC

SPA



The reaction to the movement of a conductor in a magnetic field is proportional to B<sup>2</sup>, for SPARC at 12 T:

- Magnetic stiffness 3.2GN/m
- Magnetic damping 225MN/(m/s) [half used for dynamic models to stay conservative]



### Loading Plasma Facing Components



#### Halo current:

- Shear loads along the vessel shell, from current going to/from plasma facing surface and vessel shell
- If the current path in the component needs to revers from the direction in the plasma pulling loads as well

#### Floating eddy current:

- Moments, largest around the radial and poloidal directions

#### Eddy current shared with the vacuum vessel:

- Moments, largest around the radial direction

#### Slice eddy current loads inversely proportional to current quench duration







Different vertical displacement durations do not affect the peak moment on "floating" components



©SPARC



(mN)



# Shared eddy current loads inversely proportional to current quench duration





The maximum of the shared current correlates more with the current quench duration that the vertical displacement duration.



07/19/2022

©SPARC



#### Summary load cases

#### **In-vessel components**

- Major and mitigated disruption •
  - 3.2 ms current quench
- Vertical displacement events •
  - 100 ms plasma displacement to  $q_{cyl}=1$ •
  - 3.2 ms current quench •
  - Halo current at f\*TPF=0.7 •



| Vacuum vessel                                                                  |      |                                                   |                       |
|--------------------------------------------------------------------------------|------|---------------------------------------------------|-----------------------|
| •                                                                              | Maj  | or and mitigated disruption (40 degree model)     |                       |
|                                                                                | •    | 3.2 ms current quench                             |                       |
|                                                                                | ٠    | REMC sideways force                               |                       |
| •                                                                              | Vert | ical displacement events (40 degree model)        |                       |
|                                                                                | •    | 100 ms plasma displacement to q <sub>cyl</sub> =1 |                       |
|                                                                                | •    | 3.2 ms current quench                             |                       |
|                                                                                | •    | Supported system loads + halo to reach nomina     | ll max vertical force |
| <ul> <li>Asymmetric vertical displacement events (360 degree model)</li> </ul> |      |                                                   |                       |
|                                                                                | •    | Vertical force asymmetry factor 1.4               |                       |
|                                                                                | •    | Sideways force of aligned plasma and REMC         |                       |

Magnetic stiffness and damping •