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Disruption mitigation vs. avoidance 2

• Mitigation: minimize damage of a disruption
• Reliable detection of imminent disruption and 

deployment of a strategy to limit impact of the event
• Collision sensor deploying airbags in a vehicle

• Avoidance: modify scenario to avoid onset of a 
disruption
• Discrete changes: give up on target scenario, or give up 

on shot and initiate ‘safe landing’
• Drive a different route to avoid dangerous icy patch
• Return home due to treacherous conditions

• Continuous changes: actively modify scenario in the 
minimum possible way that maintains robust operation
• Steer around a slow vehicle
• Swerve around a dangerous driver
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Proximity control 3

• Ensure the operating point remains robustly within the 
safe operating space
• Avoid crossing thresholds that trigger mitigation/discrete 

changes to the system
• Remain sufficiently far away to avoid triggering mitigation 

system on noise
• Due to limited actuation and time-varying 

behavior/constraints, important to consider predictive 
control strategies
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Requirements for Model Predictive Control 4

• Fast (to allow long enough look-ahead) + 
accurate (enough) predictive model
• Approaches
• System identification
• Empirical neural networks
• Neural networks for physics model acceleration

• Real-time capable approximation of limits
• Numerically, prefer linear, convex sets of constraints
• Safe operating region identification algorithm



Example using TRANSP simulations of KSTAR 5

Data Model Constraints Targets Closed loop 
control

Boyer et al., 2020 Nuclear Fusion 
60 (9), 096007
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Example using TRANSP simulations of KSTAR 6

Data Model Constraints Targets Closed loop 
control

Beam power

Plasma current

Outer gap

• Actuator modulations 
applied to a reference 
predictive simulation 
provide data on response 
of variables of interest
• Stored energy
• Internal inductance
• Loop voltage
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Example using TRANSP simulations of KSTAR 7

Data Model Constraints Targets Closed loop 
control
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• System identification Matlab toolbox 
enables fitting a state-space model 
to the simulated response data
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Example using TRANSP simulations of KSTAR 8

Data Model Constraints Targets Closed loop 
control
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Simulated beam fault: 
changing actuator constraint

Time-varying maximum 
allowable stored energy

Internal inductance dependent 
limit on elongation (VDE limit)

Ad hoc constraints chosen for demonstration
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Example using TRANSP simulations of KSTAR 9

Data Model Constraints Targets Closed loop 
control
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Time varying internal 
inductance target

Time varying stored energy target. 
Step change initially violates 
imposed constraints.
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Example using TRANSP simulations of KSTAR 10
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Data Model Constraints Targets Closed loop 
control

Feedback off Beam fault
Controller limits 
stored energy until 
constraint is relaxed.

Shape change is used to 
make up for loss of 
beam. Controller 
respects elongation limit 
to avoid VDE
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Opportunities for improvement addressed by recent results and 
ongoing activities 11

• The identified model is linearized around a reference TRANSP simulation and 
depends only on TRANSP predictions
• Improvements: Empirical models and/or accelerated nonlinear physics models

• The constraints tested were ad hoc
• Improvements: Base limits on state-of-the-art disruption predictors
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Opportunities for improvement addressed by recent results and 
ongoing activities 12

• The identified model is linearized around a reference TRANSP simulation and 
depends only on TRANSP predictions
• Improvements: Empirical models and/or accelerated nonlinear physics models

• The constraints tested were ad hoc
• Improvements: Base limits on state-of-the-art disruption predictors
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Empirically trained neural networks enable predictions over a 
wide operating space and close matching to experiments 13

• Several successful 
approaches on DIII-D
• Convolutional+recurrent

neural networks: J. 
Abbate et al 2021 Nucl. 
Fusion 61 046027LS.2021.3085
504.

• Reservoir computing: 
Jalalvand, et al., IEEE 
Transactions on Neural 
Networks and Learning Systems 
doi: 10.1109/TNN

• Ian Char’s work on 
reinforcement learning 
(Carnegie Mellon 
University)

• However: models may not make useful predictions outside of distribution of 
experimental data
• Especially important for new machines, upgrades, or new scenarios
• Embedding physics knowledge could help!
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Machine learning enables faster versions of physics models for 
optimization and control 14

• NUBEAM is a Monte Carlo code that calculates the effect of neutral beams on 
the plasma (heating, current drive, torque)
• Often takes >30% of TRANSP calculation time
• Machine learning approaches enable the development of NubeamNet

Boyer et al., 2019 Nuclear Fusion 
59 (5), 056008

Execution time
NubeamNet 
calculation of beam 
effects takes ~100 
microseconds per 
sample as opposed 
to minutes for 
NUBEAM
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Similar approach developed for equilibrium modeling 15

• Neural network trained to predict 
flux from coil currents and profiles
• Trained on reconstructions, could use 

modeled equilibria
• Fast equilibrium prediction for 

feedforward coil current design
• Separate model predicts linearized 

response of plasma to changes in 
currents
• Provides plasma-modified mutual 

inductance for conductor modeling
• Expected to enable fast nonlinear 

modeling of equilibrium evolution 

Wai, J, Boyer, M.D., Kolemen, E, 
2022 Nucl. Fusion 62 086042

Comparison 
of equilibrium 
predictions 
from EFIT01 
and neural 
network

Predicted 
vertical 
growth 
rate 
matches 
non-rigid 
calculation



Combining accelerated physics models with empirical models to 
optimize accuracy and generalizability 16

• Augment well-validated, accelerated 
physics surrogate models with empirical 
models for phenomena not well-
described by available physics

• Modular approach to include new 
models or data as they become 
available

Empirical models Accelerated
physics models

Control-oriented 
integrated models for 

MPC
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Mark Boyer Proceedings of the 2nd 
Conference on Learning for 
Dynamics and Control, PMLR 
120:698-707, 2020.

V. Mehta et al., "Neural Dynamical Systems: 
Balancing Structure and Flexibility in Physical 
Prediction," 2021 60th IEEE Conference on 
Decision and Control (CDC), 2021, pp. 3735-
3742.



Opportunities for improvement addressed by recent results and 
ongoing activities 17

• The identified model is linearized around a reference TRANSP simulation and 
depends only on TRANSP predictions
• Improvements: Empirical models and/or accelerated nonlinear physics models

• The constraints tested were ad hoc
• Improvements: Base limits on state-of-the-art disruption predictors
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Machine learning has emerged as a powerful disruption 
prediction/detection approach 18

• Random forests1, deep learning2, 
SVMs3, etc.
• Predict disruptivity and select a 

threshold based on confusion matrix
• Efforts have so far focused largely on 

triggering shutdown/mitigation
• Can we use models like these to support 

moving from prediction to control?
[1] Rea et al., PPCF 2018.
[2] Kates-Harbeck, et al., Nature 2019.
[3] Cannas, et al., et al., FED 2007.

7/20/22Dan Boyer IAEA TM on Plasma Disruptions

https://iopscience.iop.org/article/10.1088/1361-6587/aac7fe/meta
https://www.nature.com/articles/s41586-019-1116-4
https://www.sciencedirect.com/science/article/abs/pii/S0920379607003468


Avoidance using ML locked tearing mode predictor on DIII-D 19

• Feedback adjustment of beam 
power was able to keep 
‘tearability’ at a safe level
• Empirically tuned feedback 

parameters
• Relied on assumption that 

tearability is proportional to 
beam power
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Fu, Y., et al. PoP
27, 022501 (2020)



By sampling the local operating space, a map of disruptivity 
predictions from the model can be produced 20

Disruptivity vs. distance from disruption boundary
• Distance to disruption boundary varies significantly for the same 

values of disruptivity
• Minimum safe distance to disruption boundary is directly related to 

control performance (noise, disturbances, etc.) 

Points: Evaluation of DPRF in Wmhd-Ip space
Color: Interpolation of disruptivity
Orange line: Disruptivity threshold (0.40)
White line: 75% of disruptivity threshold



Real-time safe operating region identification (SORI) 21

• New algorithm can convert disruption 
prediction models into an estimate of the safe 
operating space
• Uses genetic optimization to identify constraints 

that bound points around current operating point 
that are predicted to be safe

• Will enable monitoring of disruption proximity 
and active optimization of controllable 
parameters to avoid disruption

• Real-time relevant execution times achieved 
with GPUs for parallelization

• Worked with C. Rea [MIT] to train a new 
version of DPRF and apply proposed algorithm 
to DIII-D data

Optimized operating point

Current operating point

Boyer et al 2021 Nuclear Fusion 
https://doi.org/10.1088/1741-4326/ac359e
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GPU implemented genetic algorithm finds optimal set of 
constraints (largest safe operating space) 22
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900 points, 3 constraints, 40 individuals, 25 generations = ~7ms per cycle



SORI algorithm identifies set of convex linear constraints 
separating safe/unsafe points in the local operating space 

• Each constraint takes the form

where       is a point in normalized (by 
standard deviation of tracking/estimation 
error), relative (to current operating 
point) operating space.

23
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Line from current 
operating point to 
point ai defines a 
hyperplane
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SORI algorithm identifies set of convex linear constraints 
separating safe/unsafe points in the local operating space 

• Each constraint takes the form

where       is a point in normalized (by 
standard deviation of tracking/estimation 
error), relative (to current operating 
point) operating space.
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Example: SORI identifies evolving safe operating region for 
DIII-D shot 180808 showing approach to disruption

• Indicates decreasing plasma current and/or increasing stored energy could 
avoid/delay disruption in this case -> interpretable result tied to specific actions

25
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Identified constraints enable adjusting targets to maintain a 
prescribed safety margin 26

• A safety margin m can be added to the 
constraint:

• Optimization of targets, penalizing violation of 
safety margin:

aix̄ < kaik2 (kaik2 �m)
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min
x̄

1

2
x̄tQx̄+ wpP (x̄)

<latexit sha1_base64="EZY/uJgOr4jo0WfbenBdB0YPXVg="></latexit>

Many possible cost functions, this one tries to find the point closest to the 
current operating point that maintains the specified safety margin.

Q weights deviation in active variables.
P penalized constraint violation.
Wp sets weight on penalty

Optimized operating point



Example: Optimization of targets indicates how to maintain a 
safety margin in disruptive shot 183246 with small 
adjustments in density and stored energy
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Disruption threshold

Safety margin, m

Suggested Wmhd change to 
maintain safety margin

Suggested ne change to 
maintain safety margin
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ML algorithms are enabling model predictive control 
development for disruption avoidance 28

• Predictive proximity control to ensure 
robust operation requires:
• Accelerated modeling

• Combination of accelerated physics 
models and empirical models

• Identification of constraints
• Important to control proximity vs. 

disruptivity
• Important to develop causal 

understanding of disruptions
• Experimental validation of these 

approaches underway at DIII-D
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Thank you! 29



It is important to distinguish between disruption detection and 
prediction: symptoms vs. causes

• Symptoms of COVID-19: cough, fever, loss of smell/taste
• Recognition of the symptoms enables treatment
• quarantine, hospitalization, etc.

• Causes of COVID-19: contact with carriers’ respiratory droplets
• Control of the causes enables avoidance: avoid close contact and wear masks

• Plasma example:
• Large vertical position/velocity is a symptom of VDE, not the cause
• Could trigger mitigation

• Vertical growth rate exceeding the controllability limits of the power supplies is the cause. 
• Reducing elongation can reduce the growth rate.

Implications for choice of disruption prediction model
• For detection, all inputs should be considered

• Goal: detect disruptions as early as possible with high reliability
• For avoidance, inputs should be restricted

• Controllable, predictable, or at least weakly correlated
• Goal: predict likelihood of disruption based on a set of inputs we can affect in a reasonably 

predictable way
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2) Choice of active/context variables and scan ranges

• Active variables
• Variables we want to change to actively avoid disruptions
• Or have significant impact on disruptivity
• Can be controlled within some range (sets range of scan)

• Context variables
• Variables we don’t want to (or can’t) change
• Or have less impact on disruptivity
• Define expected range based on combination of

• Measurement/estimation error
• Tracking error
• Projection/trending
• Future pre-programmed targets

• Choice of active variables may change throughout a discharge
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X
Y

Z (context dimensions)

Time

Va
lu

e Assuming Z stays 
in this range

How does 
disruptivity 
change as we 
scan 
this range?


